scholarly journals Fragile X syndrome patient-derived neurons developing in the mouse brain show FMR1 -dependent phenotypes

2021 ◽  
Author(s):  
Marine A Krzisch ◽  
Hao A Wu ◽  
Bingbing Yuan ◽  
Troy W. Whitfield ◽  
X. Shawn Liu ◽  
...  

Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. Here, we co-injected neural precursor cells (NPCs) from FXS patient-derived and corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Single-cell RNA sequencing of transplanted cells revealed upregulated excitatory synaptic transmission and neuronal differentiation pathways in FXS neurons. Immunofluorescence analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, increased percentages of Arc- and Egr1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons pointed to an increase in synaptic activity and synaptic strength as compared to control. This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3D context, and could be used to test new therapeutic compounds correcting neuronal development defects in FXS.

2020 ◽  
Author(s):  
Marine Krzisch ◽  
Hao Wu ◽  
Bingbing Yuan ◽  
Troy Whitfield ◽  
Shawn Liu ◽  
...  

Abstract Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. Here, we co-injected neural precursor cells (NPCs) from FXS patient-derived and corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. The cells populated the brain and differentiated into neurons and astrocytes. Single-cell RNA sequencing of transplanted cells revealed upregulated excitatory synaptic transmission and neuronal differentiation pathways in FXS neurons. Immunofluorescence analyses showed accelerated maturation of FXS neurons, an increased proportion of Arc-positive FXS neurons and increased dendritic protrusion width of FXS striatal medium spiny neurons. Our data show faster maturation and suggest increased synaptic activity and synaptic strength of FXS transplanted neurons. This model provides new insights into the alterations in FXS neuronal development.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2021 ◽  
Author(s):  
Sophie Girardin ◽  
Blandine Clément ◽  
Stephan J. Ihle ◽  
Sean Weaver ◽  
Jana B. Petr ◽  
...  

Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with mostly unidirectional connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs). Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Zabolocki ◽  
Kasandra McCormack ◽  
Mark van den Hurk ◽  
Bridget Milky ◽  
Andrew P. Shoubridge ◽  
...  

AbstractThe capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
John Paul Oliveria ◽  
Zhuo Jun Li

Astrocytes play an important role in the development of functional neural circuits in the brain. They are responsible for coordinating synapse formation and function, axon guidance, and ensuring neuronal survival. Normal astrogenesis begins during late gestation. Neural stem cells (NSCs) become primarily gliogenic and differentiate to become astrocyte precursors. Through local proliferation and functional maturation, the precursors develop into mature astrocytes, which can either be fibrous or protoplasmic. Astrogenesis is regulated by both cell intrinsic programs and cell extrinsic cues. Intrinsic chromatin changes, such as demethylation of astrocyte-specific genes, allows the NSCs to become responsive to astrocyte-inducing exogenous cues. These cues involve a collaboration of multiple pathways, namely the Notch pathway, the bone morphogenetic protein (BMP) signaling pathway, interleukin-6 (IL-6) signaling, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway. Together, they allow for normal astrogenesis to occur. However, disruption to these pathways lead to abnormal astrocyte development and results in pathologies such as the Fragile X Syndrome (FXS) and Rett Syndrome (RS). Both neurodevelopmental disorders are a result of genetic mutations that causes either transcriptional silence or transcriptional activation at inappropriate stages during development. These genetic mutations result in depressed astrocyte function in FXS, and the overexcitement of astrocytes in RS. The current hypothesis under investigation is that altered gene transcription during neurodevelopment disrupts astrogenesis, and subsequently, the behavior and function of mature astrocytes in the brain. Future research should focus on understanding the timing of the transition from neurogenesis to astrogenesis and identifying astrocyte-specific markers that are critical to its function in neurodevelopment.


2021 ◽  
Author(s):  
Magdalena Antonino ◽  
Paula Marmo ◽  
Carlos Leandro Freites ◽  
Gonzalo Quassollo ◽  
Maria Florencia Sanchez ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is characterized by a cognitive impairment associated to amyloid beta (Aβ) aggregation and deposition in the brain. Aβ is generated by sequential cleavage of the amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase complex. The mechanisms that underlie exacerbated production of Aβ, favoring its deposition in the brain, is largely unknown. In vitro studies have shown that Aβ aggregates trigger enhanced production of Aβ by a yet non described mechanism. Here, we show that in different cell types, including human neurons derived from induced pluripotent stem cells (iPSC), oligomers and fibrils of Aβ enhance the convergence and interaction of APP and BACE1 in endosomal compartments. We demonstrated a key role of Aβ-APP/Go/Gβγ signaling on the amyloidogenic processing of APP. We show that APP mutants with impaired capacity to bind Aβ or to activate Go protein, are unable to exacerbate APP and BACE1 colocalization in the presence of Aβ. Moreover, pharmacological inhibition of Gβγ subunits signaling with gallein, abrogate Aβ-dependent interaction of APP and BACE1 in endosomes preventing β-processing of APP. Collectively, these findings uncover a feed-forward mechanism of amyloidogenesis that might contribute to Aβ pathology in early stages of AD and suggest that gallein might have clinical relevance.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


2007 ◽  
Vol 81 (13) ◽  
pp. 7286-7292 ◽  
Author(s):  
Winson S. C. Ho ◽  
Anthony N. van den Pol

ABSTRACT Astrocytes are the first cells infected by murine cytomegalovirus (MCMV) in primary cultures of brain. These cells play key roles in intercellular signaling and neuronal development, and they modulate synaptic activity within the nervous system. Using ratiometric fura-2 digital calcium imaging of >8,000 neurons and glia, we found that MCMV-infected astrocytes showed an increase in intracellular basal calcium levels and an enhanced response to neuroactive substances, including glutamate and ATP, and to high potassium levels. Cultured neurons with no sign of MCMV infection showed attenuated synaptic signaling after infection of the underlying astrocyte substrate, and intercellular communication between astrocytes with no sign of infection was reduced by the presence of infected glia. These bystander effects would tend to cause further deterioration of cellular communication in the brain in addition to the problems caused by the loss of directly infected cells.


Sign in / Sign up

Export Citation Format

Share Document