scholarly journals Basal forebrain cholinergic neurons are part of the threat memory engram

2021 ◽  
Author(s):  
Prithviraj Rajebhosale ◽  
Mala R Ananth ◽  
Richard B Crouse ◽  
Li Jiang ◽  
Gretchen López- Hernández ◽  
...  

Although the engagement of cholinergic signaling in threat memory is well established (Knox, 2016a), our finding that specific cholinergic neurons are requisite partners in a threat memory engram is likely to surprise many. Neurons of the basal forebrain nucleus basalis and substantia innonimata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA), whose activation are required for both the acquisition and retrieval of cued threat memory and innate threat response behavior. The retrieval of threat memory by the presentation of the conditioning tone alone elicits acetylcholine (ACh) release in the BLA and the BLA-projecting cholinergic neurons manifest immediate early gene responses and display increased intrinsic excitability for 2-5 hours following the cue-elicited memory response to the conditioned stimulus. Silencing cue-associated engram-enrolled cholinergic neurons prevents the expression of the defensive response and the subset of cholinergic neurons activated by cue is distinct from those engaged by innate threat. Taken together we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli via the BLA, demonstrating exquisite, functionally refined organization of specific types of memory within the cholinergic basal forebrain.

2021 ◽  
Author(s):  
Prithviraj Rajebhosale ◽  
Mala R. Ananth ◽  
Richard Crouse ◽  
Gretchen Lopez-Hernandez ◽  
Christian Arty ◽  
...  

2019 ◽  
Author(s):  
W. Guo ◽  
D.B. Polley

SummaryLinking stimuli with delayed reinforcement requires neural circuits that can bridge extended temporal gaps. Auditory cortex (ACx) circuits reorganize to support auditory fear learning, but only when afferent sensory inputs temporally overlap with cholinergic reinforcement signals. Here we show that mouse ACx neurons rapidly reorganize to support learning, even when sensory and reinforcement cues are separated by a long gap. We found that cholinergic basal forebrain neurons bypass the temporal delay through multiplexed, short-latency encoding of sensory and reinforcement cues. At the initiation of learning, cholinergic neurons in Nucleus Basalis increase responses to conditioned sound frequencies and increase functional connectivity with ACx. By rapidly scaling up responses to sounds that predict reinforcement, cholinergic inputs jump the gap to align with bottom-up sensory traces and support associative cortical plasticity.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Hao Wu ◽  
John Williams ◽  
Jeremy Nathans

The basal forebrain cholinergic system modulates neuronal excitability and vascular tone throughout the cerebral cortex and hippocampus. This system is severely affected in Alzheimer's disease (AD), and drug treatment to enhance cholinergic signaling is widely used as symptomatic therapy in AD. Defining the full morphologies of individual basal forebrain cholinergic neurons has, until now, been technically beyond reach due to their large axon arbor sizes. Using genetically-directed sparse labeling, we have characterized the complete morphologies of basal forebrain cholinergic neurons in the mouse. Individual arbors were observed to span multiple cortical columns, and to have >1000 branch points and total axon lengths up to 50 cm. In an AD model, cholinergic axons were slowly lost and there was an accumulation of axon-derived material in discrete puncta. Calculations based on published morphometric data indicate that basal forebrain cholinergic neurons in humans have a mean axon length of ∼100 meters.


Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 613-626 ◽  
Author(s):  
Michael R. Milne ◽  
Christopher A. Haug ◽  
István M. Ábrahám ◽  
Andrea Kwakowsky

The neuroprotective effect of estradiol (E2) on basal forebrain cholinergic neurons (BFCNs) has been suggested to occur as a result of E2 modulation of the neurotrophin system on these neurons. The present study provides a comprehensive examination of the relationship between E2 and neurotrophin signaling on BFCNs by investigating the effect of E2 deficiency on the expression levels of neurotrophin receptors (NRs), TrkA, TrkB, and p75 on BFCNs. The number of TrkA receptor-expressing choline acetyltransferase-positive neurons was significantly reduced in the medial septum (MS) in the absence of E2. A significant reduction in TrkB-expressing choline acetyltransferase-positive cells was also observed in ovariectomized mice in the MS and nucleus basalis magnocellularis (NBM). p75 receptor expression was reduced in the NBM and striatum but not in the MS. We also showed that estrogen receptor (ER)-α was expressed by a small percentage of TrkA- and TrkB-positive neurons in the MS (12%) and NBM (19%) and by a high percentage of TrkB-positive neurons in the striatum (69%). Similarly, ERα was expressed at low levels by p75 neurons in the MS (6%) and NBM (9%) but was not expressed on striatal neurons. Finally, ERα knockout using neuron-specific estrogen receptor-α knockout transgenic mice abolished all E2-mediated changes in the NR expression on BFCNs. These results indicate that E2 differentially regulates NR expression on BFCNs, with effects depending on the NR type and neuroanatomical location, and also provide some evidence that alterations in the NR expression are, at least in part, mediated via ERα.


Author(s):  
Peter Gombkoto ◽  
Matthew Gielow ◽  
Peter Varsanyi ◽  
Candice Chavez ◽  
Laszlo Zaborszky

AbstractBasal forebrain (BF) cholinergic neurons provide the cerebral cortex with acetylcholine. Despite the long-established involvement of these cells in sensory processing, attention, and memory, the mechanisms by which cholinergic signaling regulates cognitive processes remain elusive. In this study, we recorded spiking and local field potential data simultaneously from several locations in the BF, and sites in the orbitofrontal and visual cortex in transgenic ChAT-Cre rats performing a visual discrimination task. We observed distinct differences in the fine spatial distributions of gamma coherence values between specific basalo-cortical and cortico-cortical sites that shifted across task phases. Additionally, cholinergic firing induced spatial changes in cortical gamma power, and optogenetic activation of BF increased coherence between specific cortico-cortical sites, suggesting that the cholinergic system contributes to selective modulation of cortico-cortical circuits. Furthermore, the results suggest that cells in specific BF locations are dynamically recruited across behavioral epochs to coordinate interregional cortical processes underlying cognition.


Sign in / Sign up

Export Citation Format

Share Document