basal forebrain cholinergic neurons
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 26)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ziyun Jiang ◽  
Lingyan Yang ◽  
Linhong Zhou ◽  
Miao Xiao ◽  
Sancheng Ma ◽  
...  

Abstract Background: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer’s disease and the generation of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown. Methods: In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation. Results: Immunofluorescence analysis, RT-PCR, western blotting and ELISA revealed that the efficiency of BFCN differentiation on 3D-GF was significantly greater than that on tissue culture polystyrene substrates. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin and N-cadherin. These findings indicate that 3D-GF scaffold materials are excellent candidates for the differentiation of BFCNs from NPCs. Conclusion: These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for Alzheimer’s disease therapies based on NPCs. Trial registration: Not applicable.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jose L. Martinez ◽  
Matthew D. Zammit ◽  
Nicole R. West ◽  
Bradley T. Christian ◽  
Anita Bhattacharyya

2021 ◽  
Vol 13 ◽  
Author(s):  
Jose L. Martinez ◽  
Matthew D. Zammit ◽  
Nicole R. West ◽  
Bradley T. Christian ◽  
Anita Bhattacharyya

Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer’s disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.


2021 ◽  
Author(s):  
Prithviraj Rajebhosale ◽  
Mala R Ananth ◽  
Richard B Crouse ◽  
Li Jiang ◽  
Gretchen López- Hernández ◽  
...  

Although the engagement of cholinergic signaling in threat memory is well established (Knox, 2016a), our finding that specific cholinergic neurons are requisite partners in a threat memory engram is likely to surprise many. Neurons of the basal forebrain nucleus basalis and substantia innonimata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA), whose activation are required for both the acquisition and retrieval of cued threat memory and innate threat response behavior. The retrieval of threat memory by the presentation of the conditioning tone alone elicits acetylcholine (ACh) release in the BLA and the BLA-projecting cholinergic neurons manifest immediate early gene responses and display increased intrinsic excitability for 2-5 hours following the cue-elicited memory response to the conditioned stimulus. Silencing cue-associated engram-enrolled cholinergic neurons prevents the expression of the defensive response and the subset of cholinergic neurons activated by cue is distinct from those engaged by innate threat. Taken together we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli via the BLA, demonstrating exquisite, functionally refined organization of specific types of memory within the cholinergic basal forebrain.


2021 ◽  
Author(s):  
Yue Li ◽  
Edmund Hollis

AbstractMotor control requires precise temporal and spatial encoding across distinct motor centers that is refined through the repetition of learning. The coordination of circuit refinement across motor regions requires modulatory input to shape circuit activity. Here we identify a role for the basocortical cholinergic pathway in the acquisition of a coordinated motor skill in mice. Targeted depletion of basal forebrain cholinergic neurons results in significant impairments in training on the rotarod task of coordinated movement. Cholinergic neuromodulation is required during training sessions as chemogenetic inactivation of cholinergic neurons also impairs task acquisition. Rotarod learning drives coordinated refinement of corticostriatal neurons arising in both medial prefrontal cortex (mPFC) and motor cortex, and we have found that cholinergic input to both motor regions is required for task acquisition. Critically, the effects of cholinergic neuromodulation are restricted to the acquisition stage, as depletion of basal forebrain cholinergic neurons after learning does not affect task execution. Our results indicate a critical role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fulton T. Crews ◽  
Rachael Fisher ◽  
Chloe Deason ◽  
Ryan P. Vetreno

Binge drinking and alcohol abuse are common during adolescence and cause both cognitive deficits and lasting cholinergic pathology in the adult basal forebrain. Acetylcholine is anti-inflammatory and studies using the preclinical adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2 day on/2 day off from postnatal day [P]25 to P54) model of human adolescent binge drinking report decreased basal forebrain cholinergic neurons (BFCNs) and induction of proinflammatory genes that persist long into adulthood. Recent studies link AIE-induced neuroimmune activation to cholinergic pathology, but the underlying mechanisms contributing to the persistent loss of BFCNs are unknown. We report that treatment with the cholinesterase inhibitor galantamine (4.0 mg/kg, i.p.) administered during AIE (i.e., P25–P54) or following the conclusion of AIE (i.e., P57–P72) recovered the persistent loss of cholinergic neuron phenotype markers (i.e., ChAT, TrkA, and p75NTR) and somal shrinkage of residual ChAT + neurons known to persist in AIE-exposed adults. Galantamine treatment also recovered the AIE-increased expression of the proinflammatory receptors TLR4 and RAGE, the endogenous TLR4/RAGE agonist HMGB1, and the transcription activation marker pNF-κB p65. Interestingly, we find BFCNs express TLR4 and RAGE, and that AIE treatment increased pNF-κB p65 expression in adult ChAT + IR neurons, consistent with intracellular HMGB1-TLR4/RAGE signaling within BFCNs. AIE increased epigenetic transcription silencing markers (i.e., H3K9me2 and H3K9me3) in the adult basal forebrain and H3K9me2 occupancy at cholinergic phenotype gene promoters (i.e., ChAT and TrkA). The finding of no AIE-induced changes in total basal forebrain NeuN + neurons with galantamine reversal of AIE-induced ChAT + neuron loss, TLR4/RAGE-pNF-κB p65 signals, and epigenetic transcription silencing markers suggests that AIE does not cause cell death, but rather the loss of the cholinergic phenotype. Together, these data suggest that AIE induces HMGB1-TLR4/RAGE-pNF-κB p65 signals, causing the loss of cholinergic phenotype (i.e., ChAT, TrkA, and p75NTR) through epigenetic histone transcription silencing that result in the loss of the BFCN phenotype that can be prevented and restored by galantamine.


Sign in / Sign up

Export Citation Format

Share Document