scholarly journals 300 years of change for native fish species in the upper Danube River Basin - historical flow alterations versus future climate change

2021 ◽  
Author(s):  
Martin Friedrichs-Manthey ◽  
Simone Daniela Langhans ◽  
Florian Borgwardt ◽  
Thomas Hein ◽  
Philipp Stanzel ◽  
...  

River ecosystems belong to the most threatened ecosystems on Earth. Historical anthropogenic alterations have, and future climate change will further affect river ecosystems and the species therein. While many studies assess the potential effects of expected future changes on species, little is known about the severity of these changes compared to historical alterations. Here, we used a unique 300-year time series of hydrological and climate data to assess the vulnerability of 48 native fish species in the upper Danube River Basin. We calculated species-specific vulnerability estimates relative to the reference period (1970-2000) for the periods 1800-1830, 1900-1930, and 2070-2100, including two Representative Concentration Pathways (RCP 4.5 and 8.5) and identified the environmental drivers of vulnerability estimates. Models showed that future changes under RCP 4.5 would result in moderate species vulnerability compared to historical conditions, while under RCP 8.5, the vulnerability for all species increased substantially. In addition, species vulnerability was mainly driven by hydrology in the past and is likely to be driven by temperature in the future. Our results show that future climate change would alter environmental conditions for riverine fish species at a similar magnitude as historical anthropogenic hydrological river alterations have. Shedding light on such long-term historical and possible future anthropogenic alterations provides valuable insights for prioritising conservation actions for riverine fish species.

2019 ◽  
Vol 116 (21) ◽  
pp. 10418-10423 ◽  
Author(s):  
Orly Razgour ◽  
Brenna Forester ◽  
John B. Taggart ◽  
Michaël Bekaert ◽  
Javier Juste ◽  
...  

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document