scholarly journals A Proteogenomic Signature of Age-related Macular Degeneration in Blood

Author(s):  
Valur Emilsson ◽  
Elias F Gudmundsson ◽  
Thorarinn Jonmundsson ◽  
Michael Twarog ◽  
Valborg Gudmundsdottir ◽  
...  

Age-related macular degeneration (AMD) is one of the most frequent causes of visual impairment in the elderly population. The overall etiology of AMD is complex and still poorly understood, though age, obesity, smoking, and high-density lipoprotein are known risk factors. In one of the first successful reported genome-wide association studies (GWAS), common genetic variants were strongly associated with AMD, including variants within the complement factor H (CFH) gene. To date, 34 genomic regions have been linked to AMD; however, the genes that mediate the risk remain largely unknown, indicating that novel approaches to identifying causal candidates are needed. Recent advances in proteomic technology have exposed the serum proteome's depth and complexity. In the Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), a broad population-based study of the elderly (N = 5764), levels of 4137 human serum proteins and associated networks were integrated with established genetic risk loci for AMD, revealing many predicted as well as novel proteins and pathways, linked to the disease. Serum proteins were also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study of five proteins associated with AMD found CFHR1, CFHR5, and FUT5 to be causally related to the disease, all of which were directionally consistent with the observational estimates. This study provides a robust and unique framework for elucidating the pathobiology of AMD.

2015 ◽  
Vol 59 (5) ◽  
pp. 273-278 ◽  
Author(s):  
Masahiro Miyake ◽  
Masaaki Saito ◽  
Kenji Yamashiro ◽  
Tetsuju Sekiryu ◽  
Nagahisa Yoshimura

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Iswariyaraja Sridevi Gurubaran ◽  
Hanna Heloterä ◽  
Stephen Marry ◽  
Ali Koskela ◽  
Juha M. T. Hyttinen ◽  
...  

Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.


2007 ◽  
Vol 28 (4) ◽  
pp. 203-207 ◽  
Author(s):  
Jose S. Pulido ◽  
Lisa M. Peterson ◽  
Lejla Mutapcic ◽  
Sandra Bryant ◽  
W. Edward Highsmith

2017 ◽  
Vol 135 (10) ◽  
pp. 1037 ◽  
Author(s):  
Eveline Kersten ◽  
Maartje J. Geerlings ◽  
Anneke I. den Hollander ◽  
Eiko K. de Jong ◽  
Sascha Fauser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document