scholarly journals Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes

2021 ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Laura Jochem ◽  
Carlos Pla-Prats ◽  
Fabienne Beuron ◽  
Alessandro Vannini

Retrotransposons are endogenous elements that have the ability to mobilise their DNA and integrate at different locations in the host genome. In budding yeast, the Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase III-transcribed genes, such as the genes of transfer RNAs, representing a paradigm for specific targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å-resolution of an active Ty3 strand-transfer complex (Ty3 intasome) caught in the act of integrating onto a specific tRNA gene bound to the RNA Polymerase III general transcription factor TFIIIB, which is required for Ty3 specific targeting. The structure unravels the molecular mechanisms underlying Ty3 integration specificity at RNA Polymerase III-transcribed genes and sheds light into the architecture of a retrotransposon integration machinery during the process of strand transfer at a genomic locus. The Ty3 intasome establishes contacts with a region of the TATA-binding protein (TBP), a subunit of TFIIIB, which is blocked by the ubiquitous transcription regulator negative cofactor 2 (NC2) in RNA Pol II-transcribed genes. A previously unrecognised chromodomain of the Ty3 integrase mediates non-canonical interactions with TFIIIB and the tRNA gene itself, defining with extreme precision the position of the integration site. Surprisingly, Ty3 retrotransposon tethering to TFIIIB topologically resembles LEDGF/p75 transcription factor targeting by HIV retrovirus, highlighting mechanisms of convergent evolution by unrelated mobile elements and host organisms. The Ty3 intasome-TFIIIB-tRNA promoter complex presented here represents a detailed molecular snapshot of a general transcription factor's co-option by a mobile element, resulting in harmless integration into the host genome.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Laura Jochem ◽  
Carlos Pla-Prats ◽  
Fabienne Beuron ◽  
Alessandro Vannini

AbstractRetrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.


2006 ◽  
Vol 26 (22) ◽  
pp. 8242-8251 ◽  
Author(s):  
Oliver Siol ◽  
Moustapha Boutliliss ◽  
Thanh Chung ◽  
Gernot Glöckner ◽  
Theodor Dingermann ◽  
...  

ABSTRACT In the compact Dictyostelium discoideum genome, non-long terminal repeat (non-LTR) retrotransposons known as TREs avoid accidental integration-mediated gene disruption by targeting the vicinity of tRNA genes. In this study we provide the first evidence that proteins of a non-LTR retrotransposon interact with a target-specific transcription factor to direct its integration. We applied an in vivo selection system that allows for the isolation of natural TRE5-A integrations into a known genomic location upstream of tRNA genes. TRE5-A frequently modified the integration site in a way characteristic of other non-LTR retrotransposons by adding nontemplated extra nucleotides and generating small and extended target site deletions. Mutations within the B-box promoter of the targeted tRNA genes interfered with both the in vitro binding of RNA polymerase III transcription factor TFIIIC and the ability of TRE5-A to target these genes. An isolated B box was sufficient to enhance TRE5-A integration in the absence of a surrounding tRNA gene. The RNA polymerase III-transcribed ribosomal 5S gene recruits TFIIIC in a B-box-independent manner, yet it was readily targeted by TRE5-A in our assay. These results suggest a direct role of an RNA polymerase III transcription factor in the targeting process.


2015 ◽  
Vol 35 (10) ◽  
pp. 1848-1859 ◽  
Author(s):  
Damian Graczyk ◽  
Robert J. White ◽  
Kevin M. Ryan

Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.


FEBS Letters ◽  
1990 ◽  
Vol 269 (2) ◽  
pp. 358-362 ◽  
Author(s):  
Daniel Besser ◽  
Frank Götz ◽  
Kai Schulze-Forster ◽  
Herbert Wagner ◽  
Hans Kröger ◽  
...  

2019 ◽  
Author(s):  
Matthias K. Vorländer ◽  
Florence Baudin ◽  
Robyn D. Moir ◽  
René Wetzel ◽  
Wim J. H. Hagen ◽  
...  

ABSTRACTMaf1 is a highly conserved central regulator of transcription by RNA polymerase III (Pol III), and Maf1 activity influences a wide range of phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, which establishes how Maf1 achieves transcription repression. In the Maf1-bound state, Pol III elements that are involved in transcription initiation are sequestered, and the active site is sealed off due to ordering of the mobile C34 winged helix 2 domain. Specifically, the Maf1 binding site overlaps with the binding site of the Pol III transcription factor TFIIIB and DNA in the pre-initiation complex, rationalizing that binding of Maf1 and TFIIIB to Pol III are mutually exclusive. We validate our structure using variants of Maf1 with impaired transcription-inhibition activity. These results reveal the exact mechanism of Pol III inhibition by Maf1, and rationalize previous biochemical data.


Sign in / Sign up

Export Citation Format

Share Document