scholarly journals Interior of sand fly (Diptera: Psychodidae) abdomen reveals novel structures involved in pheromone release: discovering the Manifold.

2021 ◽  
Author(s):  
Gabriel B. Tonelli ◽  
José D. Andrade-Filho ◽  
Aldenise M. Campos ◽  
Carina Margonari ◽  
Amanda R. Amaral ◽  
...  

The males of many species of New World Phlebotomines produce volatile terpenoid chemicals which have been shown in  Lutzomyia longipalpis  s.l. and  L. cruciata  to be sex/aggregation pheromones which attract female and male conspecifics. Pheromone is produced in secretory cells surrounding a cuticular reservoir which collects the pheromone and passes it through a cuticular duct to the surface of the insect. On the surface the pheromone passes through a specialised structure prior to evaporation. The shape and distribution of the structures are highly diverse and differ according to species. They range in appearance from slightly raised domes (papules) to almost spherical apple shaped structures to slight depressions with central spikes and all with a central pore. They can occur either singly or in many hundreds distributed on most abdominal tergites or grouped on one. The pheromone secreting apparatus in sand flies and other insects have historically been examined from the exterior using scanning electron microscopy (SEM) and from the interior using transmission electron microscopy. In this study we used SEM to examine the interior cuticular structure of 3 members of the  Lutzomyia longipalpis  s.l. species complex and  Migonemyia migonei  and found a new structure associated with pheromone release which we have called the Manifold. The Manifold is a substantial structure siting in-line between the cuticular duct and the underside of the tergite. Differences in the size and shape of the Manifold may be related to the chemical structure of the pheromone. In addition to the importance of this hitherto unknown structure in the production, dissemination and ecology of the pheromone, as well as its potential taxonomic value, examination of the interior cuticle by SEM may help locate the secretory apparatus in important vector species where pheromonal activity has been inferred from behavioural studies but the external secretory structures or potential pheromones have not been found.

2021 ◽  
Vol 15 (12) ◽  
pp. e0009733
Author(s):  
Gabriel B. Tonelli ◽  
José D. Andrade-Filho ◽  
Aldenise M. Campos ◽  
Carina Margonari ◽  
Amanda R. Amaral ◽  
...  

The males of many species of New World Phlebotomines produce volatile terpenoid chemicals, shown in Lutzomyia longipalpis s.l. to be sex/aggregation pheromones. Pheromone is produced by secretory cells which surround a cuticular reservoir which collects the pheromone and passes it through a cuticular duct to the surface of the insect. The pheromone then passes through specialised cuticular structures on the abdominal surface prior to evaporation. The shape and distribution of the specialised structures are highly diverse and differ according to species. In this study we used SEM to examine the interior cuticular pheromone collection and transport structures of 3 members of the Lu. longipalpis s.l. species complex and Migonemyia migonei. We found a new structure which we have called the manifold which appears to be a substantial extension of the interior tergal cuticle connected in-line with the cuticular duct and reservoir. The manifold of the Campo Grande member of the complex is longer and wider than the Jacobina member whereas the manifold of the Sobral member was shorter than both other members of the complex. Overall, the secretory apparatus of the Sobral member was smaller than the other two. The manifold of M. migonei was very different to those found in Lu. longipalpis s.l. and was positioned in a pit-like structure within the tergal cuticle. The secretory reservoir was connected by a short duct to the manifold. Differences in the size and shape of the manifold may be related to the chemical structure of the pheromone and may have taxonomic value. Examination of the interior cuticle by SEM may help to locate the secretory apparatus of vector species where pheromonal activity has been inferred from behavioural studies but the external secretory structures or pheromones have not yet been found.


Author(s):  
Ellen Holm Nielsen

In secretory cells a dense and complex network of actin filaments is seen in the subplasmalemmal space attached to the cell membrane. During exocytosis this network is undergoing a rearrangement facilitating access of granules to plasma membrane in order that fusion of the membranes can take place. A filamentous network related to secretory granules has been reported, but its structural organization and composition have not been examined, although this network may be important for exocytosis.Samples of peritoneal mast cells were frozen at -70°C and thawed at 4°C in order to rupture the cells in such a gentle way that the granule membrane is still intact. Unruptured and ruptured cells were fixed in 2% paraformaldehyde and 0.075% glutaraldehyde, dehydrated in ethanol. For TEM (transmission electron microscopy) cells were embedded in Lowicryl K4M at -35°C and for SEM (scanning electron microscopy) they were placed on copper blocks, critical point dried and coated. For immunoelectron microscopy ultrathin sections were incubated with monoclonal anti-actin and colloidal gold labelled IgM. Ruptured cells were also placed on cover glasses, prefixed, and incubated with anti-actin and colloidal gold labelled IgM.


Parasitology ◽  
1981 ◽  
Vol 83 (3) ◽  
pp. 513-518 ◽  
Author(s):  
J. P. Laclette ◽  
Marie Therese Merchant ◽  
Kaethe Willms ◽  
L. Cañedo

SUMMARYThe effect of the anthelmintic Mebendazole on Cysticercus cellulosae maintained in culture medium was studied by transmission electron microscopy. In addition to the well-known morphological changes induced by Mebendazole in other cestode and nematode larvae, it also induced the cytoplasmic appearance of paracrystalline bundles in the secretory cells of the bladder wall. These bundles were formed by groups of large parallel tubules arranged in a hexagonal-like pattern. The tubules, which had an external diameter of about 50 nm and a length that might exceed 5 μm, were surrounded by a matrix and a distance between neighbouring tubules of 80–120 nm centre to centre was estimated. The tubules were stable to colchicine and low temperature. The temporary appearance of bundles is described and some alternative explanations on their origin are advanced.


1986 ◽  
Vol 94 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Roberto Gamoletti ◽  
Paola Poggi ◽  
Mario Sanna ◽  
Carlo Zini

The ultrastructural appearance of the regenerated middle ear mucosa—found at the second operation of staged intact canal wall tympanoplasty (ICWT) with mastoidectomy—has been evaluated with the transmission electron microscope. The regenerated epithelium showed all the morphologic characteristics of the normal middle ear mucosa: ciliated cells, noncillated cells, and secretory cells. All of these (Including goblet cells) have been found in the specimens. It is concluded that a normal middle ear mucosa regenerates to cover all denuded bone surfaces after the first operation of staged ICWT with mastoidectomy, when silicone rubber sheeting has been used to prevent adhesions and maintain an air-containing middle ear space.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Tainã Gonçalves Loureiro ◽  
Mauricio Pereira Almerão ◽  
Maria Cristina Faccioni-Heuser ◽  
Georgina Bond-Buckup ◽  
Paula Beatriz De Araujo

Egg incubation on the female abdomen is the parental care behavior observed in aeglids, in which eggs are kept adhered to maternal pleopods and maintained, cleaned and aerated. In A. platensis, egg attachment occurs with the aid of pleopodal setae, which are twisted around their axis in the distal region, forming the funiculus, and pleopodal glands, which are responsible for the production of the adhesive substance that seems to be involved in egg fixation to pleopodal setae. Those glands are acini formed by secretory cells arranged concentrically around a central duct, giving them a rosette appearance. Two types of secretory cells were observed, those that produce electron-lucid vesicles and those having electron-dense ones. Both kinds of vesicles are released in a duct whose opening pore is located on the pleopodal surface and constitute the adhesive substance that coats eggs and pleopodal setae, ensuring egg fixation to the female body and maternal care maintenance. This study investigates the internal and external morphology of Aegla platensis pleopods, to understand the egg attachment process and identify the structures involved in this phenomenon. Three microscopy techniques are used: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and optical microscopy (OM).


2012 ◽  
Vol 65 (2) ◽  
pp. 11-22 ◽  
Author(s):  
Sebastian Antoń ◽  
Magdalena Kamińska ◽  
Małgorzata Stpiczyńska

The structure of the osmophores in <i>Stanhopea graveolens</i> and <i>Cycnoches chlorochilon</i> was studied by means of light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The scent glands are located in the basal part of the labellum. The surface of the osmophores is wrinkled or rugose, which increases the area of fragrance emission. On the surface of the epidermis, remnants of secretion are noticeable in <i>S. graveolens</i>, but these are absent in <i>C. chlorochilon</i>. The osmophore tissue is composed of secretory epidermal cells and several layers of subepidermal parenchyma, and it is supplied by vascular bundles that run in ground parenchyma. The secretory cells have large nuclei, a dense cytoplasm with numerous ER profiles, lipid droplets, and plastids with a substantial amount of starch, which are probably involved in the synthesis of volatile substances. In the cell walls of the osmophore cells, numerous pits with plasmodesmata occur that are likely to take part in symplastic transport of the scent compounds. The structure of the osmophores is similar in both investigated species. Both <i>S. graveolens</i> and <i>C. chlorochilon</i> are pollinated by euglossine bees, and such similarity results from adaptation to effective scent emission and attraction of pollinators.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1099
Author(s):  
Jing Gao ◽  
Jiaxing Wang ◽  
Hui Chen

The female reproductive system, ovary structure and ultrastructure of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae) were investigated using light microscopy, scanning electron microscopy, and transmission electron microscopy. Its female reproductive system is comprised of two ovaries (each ovary has two ovarioles), lateral oviducts, common oviduct, spermathecal sac, spermathecal pump, two accessory glands and bursa copulatrix. Well-developed endoplasmic reticulum can be clearly seen in the secretory cells of spermathecal sac. This species has telotrophic meroistic ovarioles that are comprised of terminal filament, tropharium, vitellarium and pedicel. The terminal filaments are simple; each is comprised of cellular peritoneal sheath. The presence of several clusters of nurse cells in the tropharium is indicative that its ovarioles conform to the transition stage. This indicates that there are at least two different types (transition stage and secondary stage) of ovarioles in Curculionidae.


2012 ◽  
Vol 64 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Magdalena Kamińska ◽  
Małgorzata Stpiczyńska

To date, the structure of the nectary spur of <i>Dendrobium finisterrae</i> has not been studied in detail, and the present paper compares the structural organization of the floral nectary in this species with the spurs of other taxa. The nectary spur of <i>D. finisterrae</i> was examined by means of light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is composed of a single layer of secretory epidermis and several layers of small and compactly arranged subepidermal secretory cells. The secretory cells have thick cellulosic cell walls with primary pits. The secretory tissue is supplied by vascular bundles that run beneath in ground parenchyma and are additionally surrounded by strands of sclerenchymatous fibers. The flowers of the investigated species displayed morphological features characteristic of bee-pollinated taxa, as they are zygomorphic, creamy-green coloured with evident nectar guides. They also emit a weak but nice scent. However, they possess some characters attributed to bird-pollinated flowers such as a short, massive nectary spur and collenchymatous secretory tissue that closely resembles the one found in the nectaries of certain species that are thought to be bird-pollinated. This similarity in anatomical organization of the nectary, regardless of geographical distribution and phylogeny, strongly indicates convergence and appears to be related to pollinator-driven selection.


Author(s):  
Ian G. Thompson

With the advent of new techniques for isolating single cells for biochemical and physiological investigation, an important consideration is the morphological integrity of these cells after dissociation from the intact tissue. Do isolated cells retain the degree of structural differentiation that is apparent in vivo? The principal secretory cells of the avian salt gland are an example of cells that are highly differentiated in form under conditions of physiological stress. This report describes the ultrastructure of dissociated salt gland cells as visualized with the scanning and transmission electron microscope.The dissociation procedure employed here was the same as that applied to the exocrine pancreas. For transmission electron microscopy the cell suspension was centrifuged and the resultant pellet prefixed in cacodylate buffered 3% glutaraldehyde- 1% paraformaldehyde, postfixed in unbuffered 1% osmium tetroxide, and embedded in epon-araldite. An assessment of the cell surface coat following enzymatic dissociation was facilitated by the inclusion of ruthenium red (500 ppm) in both the aldehyde and osmium fixation steps.


Author(s):  
P. Sadhukhan ◽  
J. Chakraborty ◽  
M. S. Soloff ◽  
M. H. Wieder ◽  
D. Senitzer

The means to identify cells isolated from the mammary gland of the lactating rat as a prerequisite for cell purification have been developed.The cells were isolated from mammary tissue with 0. 1% collagenase, and they were visualized by scanning and transmission electron microscopy and by alkaline phosphatase cytochemistry.The milk-secreting cells have surface microvilli, whereas the surface of the myoepithelial cells is smooth (Fig. 1). The two isolated epithelial cell types are readily distinguishable by transmission electron microscopy (Fig. 2). The secretory cells contain vacuoles and a relatively extensive rough endoplasmic reticulum, whereas the myoepithelial cells contain a more osmiophilic cytoplasm, contractile filaments (Fig. 3) and elongate processes. These features are consistent with the appearance of the two cell types in situ.Incubation of isolated cells with oxytocin prior to glutaraldehyde fixation resulted in the contraction of the myoepithelial cell processes (Figs. 4 & 5). This physiological response to oxytocin shows that the isolated myoepithelial cells were intact. The appearance of isolated secretory cells was unchanged by the presence of oxytocin.


Sign in / Sign up

Export Citation Format

Share Document