scholarly journals Dynamic changes in spatial representation within the posterior parietal cortex in response to visuomotor adaptation

2021 ◽  
Author(s):  
Selene Schintu ◽  
Dwight J. Kravitz ◽  
Edward H. Silson ◽  
Catherine A. Cunningham ◽  
Eric M. Wassermann ◽  
...  

Recent studies used fMRI population receptive field (pRF) mapping to demonstrate that retinotopic organization extends from primary visual cortex to ventral and dorsal visual pathways by quantifying visual field maps, receptive field size, and laterality throughout multiple areas. Visuospatial representation in the posterior parietal cortex (PPC) is modulated by attentional deployment, raising the question of whether spatial representation in the PPC is dynamic and flexible and that this flexibility contributes to visuospatial learning. To answer this question, changes in spatial representation within PPC, as measured with pRF mapping, were recorded before and after visuomotor adaptation. Visuospatial input was laterally manipulated, rightward or leftward, via prism adaptation, a well-established visuomotor technique that modulates visuospatial performance. Based on existing models of prism adaptation mechanism of action, we predicted left prism adaptation to produce a right visuospatial bias via an increasing pRF size in the left parietal cortex. However, our hypothesis was agnostic as to whether right PPC will show an opposite effect given the bilateral bias to right visual field. Findings show that adaptation to left-shifting prisms increases pRF size in both PPCs, while leaving space representation in early visual cortex unchanged. This is the first evidence that prism adaptation drives a dynamic reorganization of response profiles in the PPC. Our results show that spatial representation in the PPC not only reflects changes driven by attentional deployment but dynamically changes in response to visuomotor adaptation. Furthermore, our results provide support for using prism adaptation as a tool to rehabilitate visuospatial deficits.

2017 ◽  
Vol 8 (1) ◽  
pp. e00886
Author(s):  
Yanyan Li ◽  
Xiaopeng Hu ◽  
Yongqiang Yu ◽  
Ke Zhao ◽  
Yuri B. Saalmann ◽  
...  

2005 ◽  
Vol 94 (2) ◽  
pp. 1372-1384 ◽  
Author(s):  
Denis Schluppeck ◽  
Paul Glimcher ◽  
David J. Heeger

Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contra-lateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC.


2006 ◽  
Vol 95 (3) ◽  
pp. 1645-1655 ◽  
Author(s):  
W. Pieter Medendorp ◽  
Herbert C. Goltz ◽  
Tutis Vilis

We used functional magnetic resonance imaging (fMRI) to investigate the role of the human posterior parietal cortex (PPC) in storing target locations for delayed double-step saccades. To do so, we exploited the laterality of a subregion of PPC that preferentially responds to the memory of a target location presented in the contralateral visual field. Using an event-related design, we tracked fMRI signal changes in this region while subjects remembered the locations of two sequentially flashed targets, presented in either the same or different visual hemifields, and then saccaded to them in sequence. After presentation of the first target, the fMRI signal was always related to the side of the visual field in which it had been presented. When the second target was added, the cortical activity depended on the respective locations of both targets but was still significantly selective for the target of the first saccade. We conclude that this region within the human posterior parietal cortex not only acts as spatial storage center by retaining target locations for subsequent saccades but is also involved in selecting the target for the first intended saccade.


2017 ◽  
Author(s):  
Gerald N. Pho ◽  
Michael J. Goard ◽  
Jonathan Woodson ◽  
Benjamin Crawford ◽  
Mriganka Sur

AbstractThe posterior parietal cortex (PPC) has been implicated in perceptual decisions, but whether its role is specific to sensory processing or sensorimotor transformation is not well understood. To distinguish these possibilities, we trained mice of either sex to perform a visual discrimination task and imaged the activity of PPC populations during both engaged behavior and passive viewing. Unlike neurons in primary visual cortex (V1), which responded robustly to stimuli in both conditions, most neurons in PPC responded exclusively during task engagement. However, PPC responses were heterogeneous, with a smaller subset of neurons exhibiting stimulus-driven, contrast-dependent responses in both conditions. Neurons in PPC also exhibit stronger modulation by noise correlations relative to V1, as illustrated by a generalized linear model that takes into account both task variables and between-neuron correlations. To test whether PPC responses primarily encoded the stimulus or the learned sensorimotor contingency, we imaged the same neurons before and after re-training mice on a reversed task contingency. Unlike V1 neurons, most PPC neurons exhibited a dramatic shift in selectivity after re-training and reflected the new sensorimotor contingency, while a smaller subset of neurons preserved their stimulus selectivity. Mouse PPC is therefore strongly task-dependent, contains heterogeneous populations sensitive to stimulus and choice, and may play an important role in the flexible transformation of sensory inputs into motor commands.Significance StatementPerceptual decision making involves both processing of sensory information and mapping that information onto appropriate motor commands via learned sensorimotor associations. While visual cortex (V1) is known to be critical for sensory processing, it is unclear what circuits are involved in the process of sensorimotor transformation. While the mouse posterior parietal cortex (PPC) has been implicated in visual decisions, its specific role has been controversial. By imaging population activity while manipulating task engagement and sensorimotor contingencies, we demonstrate that PPC, unlike V1, is highly task-dependent, heterogeneous, and sensitive to the learned task demands. Our results suggest that PPC is more than a visual area, and may instead be involved in the flexible mapping of visual information onto appropriate motor actions.


2010 ◽  
Vol 23 (4) ◽  
pp. 213-215 ◽  
Author(s):  
Barbara Magnani ◽  
Massimiliano Oliveri ◽  
Giuseppa Renata Mangano ◽  
Francesca Frassinetti

2005 ◽  
Vol 94 (1) ◽  
pp. 734-740 ◽  
Author(s):  
W. Pieter Medendorp ◽  
Herbert C. Goltz ◽  
Tutis Vilis

We used functional magnetic resonance imaging (fMRI) to investigate the role of the human posterior parietal cortex (PPC) in anti-saccades. To do so, we exploited the laterality of a subregion of the PPC for remembered target location. Using an event-related design, we tracked fMRI signal changes in this region while subjects remembered the location of a flashed target, then were instructed to plan either an anti- or pro-saccade to that location, and finally were instructed to execute the movement. At first, the region responded preferentially to the memory of a target location presented in the contralateral visual field. However, when an anti-cue specified a saccadic response into the opposite visual field, we observed a dynamic shift in cortical activity from one hemisphere to the other. This shows that this region within the human posterior parietal cortex codes the target location for an upcoming saccade, rather than the location of the remembered visual stimulus in an anti-saccade task.


2019 ◽  
Vol 50 (6) ◽  
pp. 2970-2987 ◽  
Author(s):  
Ryuichi Hishida ◽  
Masao Horie ◽  
Hiroaki Tsukano ◽  
Manavu Tohmi ◽  
Kohei Yoshitake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document