scholarly journals Photoprotection is regulated by light-independent CO2 availability

2021 ◽  
Author(s):  
M. Águila Ruiz-Sola ◽  
Serena Flori ◽  
Yizhong Yuan ◽  
Gaelle Villain ◽  
Emanuel Sanz-Luque ◽  
...  

Photosynthetic algae cope with suboptimal levels of light and CO2. In low CO2 and excess light, the green alga Chlamydomonas reinhardtii activates a CO2 Concentrating Mechanism (CCM) and photoprotection; the latter is mediated by LHCSR1/3 and PSBS. How light and CO2 signals converge to regulate photoprotective responses remains unclear. Here we show that excess light activates expression of photoprotective and CCM-related genes and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3 and CCM genes while stabilizing the LHCSR1 protein. We also show that CIA5, which controls CCM genes, is a major regulator of photoprotection, elevating LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 accumulation. Our work emphasizes the importance of CO2 in regulating photoprotection and the CCM, demonstrating that the impact of light on photoprotection is often indirect and reflects intracellular CO2 levels.

2003 ◽  
Vol 133 (4) ◽  
pp. 1854-1861 ◽  
Author(s):  
Steve V. Pollock ◽  
Sergio L. Colombo ◽  
Davey L. Prout ◽  
Ashley C. Godfrey ◽  
James V. Moroney

1982 ◽  
Vol 52 (6) ◽  
pp. 1426-1431 ◽  
Author(s):  
L. E. Olson ◽  
N. E. Robinson

The mechanical properties of a collaterally ventilating lung segment were studied in 18 anesthetized paralyzed mongrel dogs artificially ventilated with room air end-tidal CO2 fraction = 5%. Nine dogs were pretreated with propranolol, and nine dogs were not. With 0, 5, or 12% CO2 in O2 flowing into the segment, steady-state resistance of segmental airways (Rss) and time for 90% pressure equilibration (T90) between the segment and airway opening after flow was discontinued were determined at functional residual capacity with the vagus nerve ipsilateral to the segment intact, sectioned, or electrically stimulated. Vagal stimulation increased Rss and T90 at all CO2 levels, whereas unilateral vagotomy had no effect. Propranolol treatment enhanced the increase in Rss caused by vagal stimulation at low but not at high CO2 levels, suggesting that high CO2 mimics the effect of propranolol on Rss. High levels of CO2 did not have the same effect as propranolol on T90, propranolol treatment reducing the increase in T90 caused by vagal stimulation at high but not at low CO2 levels. These results demonstrate that local changes in alveolar CO2 tensions modify but do not abolish the effect of vagal stimulation on collateral ventilation.


2010 ◽  
Vol 22 (9) ◽  
pp. 3105-3117 ◽  
Author(s):  
Norikazu Ohnishi ◽  
Bratati Mukherjee ◽  
Tomoki Tsujikawa ◽  
Mari Yanase ◽  
Hirobumi Nakano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document