light quality
Recently Published Documents


TOTAL DOCUMENTS

1105
(FIVE YEARS 229)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Author(s):  
D. LAZAR ◽  
A. STIRBET ◽  
L.O. BJÖRN ◽  
G. GOVINDJEE

2022 ◽  
Vol 12 ◽  
Author(s):  
Elisabeth Hommel ◽  
Monique Liebers ◽  
Sascha Offermann ◽  
Thomas Pfannschmidt

Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.


BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 645-649
Author(s):  
FATIMA CVRČKOVÁ ◽  
HANA KONRÁDOVÁ

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Xinglin Ke ◽  
Hideo Yoshida ◽  
Shoko Hikosaka ◽  
Eiji Goto

Dwarf tomatoes are advantageous when cultivated in a plant factory with artificial light because they can grow well in a small volume. However, few studies have been reported on cultivation in a controlled environment for improving productivity. We performed two experiments to investigate the effects of photosynthetic photon flux density (PPFD; 300, 500, and 700 μmol m−2 s−1) with white light and light quality (white, R3B1 (red:blue = 3:1), and R9B1) with a PPFD of 300 μmol m−2 s−1 on plant growth and radiation-use efficiency (RUE) of a dwarf tomato cultivar (‘Micro-Tom’) at the vegetative growth stage. The results clearly demonstrated that higher PPFD leads to higher dry mass and lower specific leaf area, but it does not affect the stem length. Furthermore, high PPFD increased the photosynthetic rate (Pn) of individual leaves but decreased RUE. A higher blue light proportion inhibited dry mass production with the same intercepted light because the leaves under high blue light proportion had low Pn and photosynthetic light-use efficiency. In conclusion, 300 μmol m−2 s−1 PPFD and R9B1 are the recommended proper PPFD and light quality, respectively, for ‘Micro-Tom’ cultivation at the vegetative growth stage to increase the RUE.


Nativa ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 582-588
Author(s):  
Denys Matheus Santana Costa Souza ◽  
Sergio Bruno Fernandes ◽  
Letícia Vaz Molinari ◽  
Maria Lopes Martins Avelar ◽  
Douglas Santos Gonçalves ◽  
...  

ABSTRACT: Micropropagation technique is a valuable alternative for high quality genetic preservation of endemic species such as the orchid Cattleya crispata from “Campo Rupestre Ferruginoso”. This study aims to evaluate the influence of light quality on in vitro multiplication and elongation phases, offering new insights on the limiting factors of C. crispata. Seeds extracted from capsules were used for inoculation in the culture medium. Four light sources were evaluated for in vitro culture, namely: fluorescent lamp, white LEDs, red LEDs and red/blue LEDs. Data about the number of shoots, shoot length, shooting vigor and pigment content were assessed at 90 days of in vitro culture. Based on the recorded results, white LEDs are the most suitable ones for in vitro multiplication and elongation phases of C. crispata. It offers higher quality for seedling production and increases the chances of genetic conservation of the species. Keywords: ‘Campo Rupestre Ferruginoso’; in vitro propagation; wavelength; LEDs.


2021 ◽  
pp. 1-19
Author(s):  
Cristóvão Sousa ◽  
Daniel Teixeira ◽  
Davide Carneiro ◽  
Diogo Nunes ◽  
Paulo Novais

As the availability of computational power and communication technologies increases, Humans and systems are able to tackle increasingly challenging decision problems. Taking decisions over incomplete visions of a situation is particularly challenging and calls for a set of intertwined skills that must be put into place under a clear rationale. This work addresses how to deliver autonomous decisions for the management of a public street lighting network, to optimize energy consumption without compromising light quality patterns. Our approach is grounded in an holistic methodology, combining semantic and Artificial Intelligence principles to define methods and artefacts for supporting decisions to be taken in the context of an incomplete domain. That is, a domain with absence of data and of explicit domain assertions.


2021 ◽  
Author(s):  
Flávia de Lacerda Bukzem ◽  
Cláudia Naves David Amorim ◽  
Ayana Dantas de Medeiros

Lighting quality is a concept that allows excellent vision while providing high comfort. In addition to standards, there are diverse methods that can assist in understanding the light quality of an environment and one such mechanism is monitoring protocols. The aim of this paper is to investigate the lighting quality in office buildings with good integrated design and/or daylighting design in Brazilian context, combining monitoring protocol and user opinion. Two office buildings were evaluated: Ministry of Mines and Energy (MME) in Brasília and the Support Centre for Technological Development of the University of Brasilia (CDT/UnB). Both case study shows good results to photometry parameters as illuminance average, directionality, quality of view out and melanopic values. The opinions of users, in general, are positive and the aligning with on-site measurements.


Sign in / Sign up

Export Citation Format

Share Document