scholarly journals CLASS-II KNOX genes coordinate spatial and temporal patterns of the tomato ripening

2021 ◽  
Author(s):  
Alexandra Keren-Keiserman ◽  
Amit Shtern ◽  
Daniel Chalupowicz ◽  
Chihiro Furumizu ◽  
John p Alvarez ◽  
...  

Ripening is a complex developmental change of a mature organ, the fruit. In plants like a tomato, it involves softening, pigmentation, and biosynthesis of metabolites beneficial for the human diet. Examination of the transcriptional changes towards ripening suggests that redundant uncharacterized factors may be involved in the coordination of the ripening switch. Previous studies have demonstrated that Arabidopsis CLASS-II KNOX genes play a significant role in controlling the maturation of siliques and their transition to senescence. Here we examined the combined role of all four tomato CLASS-II KNOX genes in the maturation and ripening of fleshy fruits using an artificial microRNA targeting them simultaneously. As expected, the knockdown plants (35S::amiR-TKN-CL-II) exhibited leaves with increased complexity, reminiscent of the leaf phenotype of plants overexpressing CLASS- I KNOX, which antagonize CLASS-II KNOX gene functions. The fruits of 35S::amiR-TKN-CL-II plants were notably smaller than the control. While their internal gel/placenta tissue softened and accumulated the typical pigmentation, the pericarp color break took place ten days later than control, and eventually, it turned yellow instead of red. Additionally, the pericarp of 35S::amiR-TKN-CL-II fruits remained significantly firmer than control even after three weeks of shelf storage. Strikingly, the 35S::amiR-TKN-CL-II fruits showed early ethylene release and respiration peak, but these were correlated only with liquefaction and pigmentation of the internal tissues. Our findings suggest that CLASS-II KNOX genes are required to coordinate the spatial and temporal patterns of tomato fruit ripening.

Author(s):  
Anastasiia I Maksimova ◽  
Lidija Berke ◽  
Marco G Salgado ◽  
Ekaterina A Klimova ◽  
Katharina Pawlowski ◽  
...  

Abstract KNOX genes encode transcription factors (TFs), several of which act non-cell-autonomously. KNOX genes evolved in algae, and two classes, class I KNOX and class II KNOX genes, were already present in charophytes. In tracheophytes, class I KNOX genes are expressed in shoot apical meristems (SAMs) and thought to inhibit cell differentiation, whereas class II KNOX genes are expressed in mature organs regulating differentiation. In this review, we summarize the data available on gene families and expression patterns of class I and class II KNOX genes in embryophytes. The expression patterns of class I KNOX genes should be seen in the context of SAM structure and of leaf primordium development where the inhibition of cell differentiation needs to be lifted. Although the SAMs of angiosperms and gnetophytes almost always belong to the duplex type, several other types are distributed in gymnosperms, ferns, lycopods and bryophytes. KNOX gene families remained small (maximally five genes) in the representatives of bryophytes, lycopods and ferns examined thus far; however, they expanded to some extent in gymnosperms and, independently and much more strongly, in angiosperms. The growing sophistication of mechanisms to repress and re-induce class KNOX I expression played a major role in the evolution of leaf shape.


2016 ◽  
Author(s):  
Ruth Coffey ◽  
◽  
Hannah Sprinkle ◽  
Eric Sherry ◽  
Brian Sturgis ◽  
...  

Radiocarbon ◽  
2020 ◽  
pp. 1-11
Author(s):  
R Garba ◽  
P Demján ◽  
I Svetlik ◽  
D Dreslerová

ABSTRACT Triliths are megalithic monuments scattered across the coastal plains of southern and southeastern Arabia. They consist of aligned standing stones with a parallel row of large hearths and form a space, the meaning of which is undoubtedly significant but nonetheless still unknown. This paper presents a new radiocarbon (14C) dataset acquired during the two field seasons 2018–2019 of the TSMO (Trilith Stone Monuments of Oman) project which investigated the spatial and temporal patterns of the triliths. The excavation and sampling of trilith hearths across Oman yielded a dataset of 30 new 14C dates, extending the use of trilith monuments to as early as the Iron Age III period (600–300 BC). The earlier dates are linked to two-phase trilith sites in south-central Oman. The three 14C pairs collected from the two-phase trilith sites indicated gaps between the trilith construction phases from 35 to 475 years (2 σ). The preliminary spatio-temporal analysis shows the geographical expansion of populations using trilith monuments during the 5th to 1st century BC and a later pull back in the 1st and 2nd century AD. The new 14C dataset for trilith sites will help towards a better understanding of Iron Age communities in southeastern Arabia.


2011 ◽  
Vol 400 (1-2) ◽  
pp. 244-254 ◽  
Author(s):  
F. André ◽  
M. Jonard ◽  
F. Jonard ◽  
Q. Ponette

Sign in / Sign up

Export Citation Format

Share Document