scholarly journals Consistent predictors of microbial community composition across scales in grasslands reveal low context-dependency

2021 ◽  
Author(s):  
Dajana Radujković ◽  
Sara Vicca ◽  
Margaretha van Rooyen ◽  
Peter Wilfahrt ◽  
Leslie Brown ◽  
...  

Environmental circumstances shaping soil microbial communities have been studied extensively, but due to disparate study designs it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 sampled across regional plant productivity gradients) to examine i) if the same abiotic or biotic factors predict both large- and regional-scale patterns in bacterial and fungal community composition, and ii) if microbial community composition differs consistently with regional plant productivity (low vs high) across different sites. We found that there is high congruence between predictors of microbial community composition across spatial scales; bacteria were predominantly associated with soil properties and fungi with plant community composition. Moreover, there was a microbial community signal that clearly distinguished high and low productivity soils that was shared across worldwide distributed grasslands suggesting that microbial assemblages vary predictably depending on grassland productivity.

2015 ◽  
Vol 12 (8) ◽  
pp. 2585-2596 ◽  
Author(s):  
L. Ma ◽  
C. Guo ◽  
X. Lü ◽  
S. Yuan ◽  
R. Wang

Abstract. Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


2015 ◽  
Vol 81 (6) ◽  
pp. 2173-2181 ◽  
Author(s):  
E. Marie Muehe ◽  
Pascal Weigold ◽  
Irini J. Adaktylou ◽  
Britta Planer-Friedrich ◽  
Ute Kraemer ◽  
...  

ABSTRACTThe remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plantArabidopsis halleriin soil microcosm experiments.A. halleriaccumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples ofA. halleriidentified microbial taxa (Lysobacter,Streptomyces,Agromyces,Nitrospira, “CandidatusChloracidobacterium”) of higher relative sequence abundance in the rhizospheres ofA. halleriplants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction ofA. halleriwith its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions betweenA. halleriand individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.


2014 ◽  
Vol 11 (12) ◽  
pp. 17729-17756 ◽  
Author(s):  
L. Ma ◽  
C. Guo ◽  
X. Lü ◽  
S. Yuan ◽  
R. Wang

Abstract. Soil microbial communities play important role in organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about factors driving soil microbial community composition at large scales. The objective of this study was to determine whether climate dominates among environmental factors governing microbial community composition and biomass at a regional scale. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations in North-East China Transect (850 km x 50 km). The results showed that soil water availability and land use changes exhibited the dominant effects on soil microbial community composition and biomass at the regional scale, while climate factors (expressed as a function of large-scale spatial variation) did not show strong relationships with distribution of microbial community composition. Likewise, factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Wetter soils had higher contributions of gram-positive bacteria, whereas drier soils had higher contributions of gram-negative bacteria and fungi. Heavily disturbed soils had lower contributions of gram-negative bacteria and fungi than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate factors, commonly known to structure distribution of macroorganisms, were not the most important drivers governing regional pattern of microbial communities because of inclusion of irrigated and managed practices. In comparison, soil water regime and land use types appear to be primary determinants of microbial community composition and biomass.


2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Jianrong Huang ◽  
Jian Yang ◽  
Hongchen Jiang ◽  
Geng Wu ◽  
Zhanling Xie ◽  
...  

ABSTRACT Little is known about the onshore microbial contribution to the microbial communities in nearby lakes and its response to salinity. In this study, transplanting experiments were established by caging onshore soils with dialysis bags followed by in situ 50-day incubation in nearby lakes with different salinity on the Qinghai-Tibetan Plateau. At the end of the experiment, geochemical and microbial analyses were performed on the original soils, caged soils and lake waters and sediments at the incubation sites. The results showed that the salinity increased significantly (P < 0.05) in the caged soils and such salinity increases showed significant (P < 0.05) positive correlation with the salinity of the studied lakes. The microbial community composition and predicted functions in the caged soils were significantly (P < 0.05) changed in comparison with their corresponding original soils, and such variation could be mainly explained by the succession of members of the Proteobacteria, Bacteroidetes and Actinobacteria from the original soils to their corresponding caged soils. The onshore microbial contribution appeared to be limited (up to 11.2% for sediment and negligible for water, respectively) to nearby lake microbial communities. Nevertheless, the survival of onshore soil microbial communities was mainly limited by the salinity of the receiving lakes.


2021 ◽  
Author(s):  
Cong Jiang ◽  
Wei Shui ◽  
Su-Feng Zhu ◽  
Jie Feng

Abstract Background: Karst tiankeng is a large-scale negative surface terrain, and slope aspect affect the soil conditions, vegetation and microbial flora in the tiankeng. However, the influence of the slope aspect on the soil microbial community in tiankeng has not been elucidated. Methods: In this study, metagenomic sequencing technology was used to analyzed the soil microbial communities and metabolic function on the shady and sunny slopes of karst tiankeng. Results: The Shannon-Wiener diversity of microbial communities on shady slopes was significantly higher than that on shady slopes. Shady and sunny slopes have similar microbial community composition, but there are differences in abundance. The linear discriminate analysis (LDA) results showed that biomarkers mainly belongs to Actinobacteria, Chloroflexi and Proteobacteria. Functional pathways and CAZy (Carbohydrate-Active Enzymes) genes also had a remarkable response to slope aspect change. LEfSe results indicated several biomarker pathways in sunny slope involved in human disease. Moreover, the abundance of CAZy genes was higher in shady slope and had stronger ability in decomposing litter. The microbial communities were mainly correlation with the vegetation characteristics (species richness and coverage) and soil properties (SOM and pH). Conclusions: These results indicate slope aspect has a pronounced influence on microbial community composition, structure and function at karst tiankeng. In the future, the conservation of karst tiankeng biodiversity should pay more attention to topographical factors.


Sign in / Sign up

Export Citation Format

Share Document