climate factors
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 423)

H-INDEX

35
(FIVE YEARS 13)

2022 ◽  
Vol 32 (1) ◽  
pp. 28-31
Author(s):  
Shengrui Yao

The increased popularity of jujube (Ziziphus jujuba) combined with the difficulty of grafting have limited supplies of grafted trees in the United States. From 2011 to 2020, grafting was practiced for cultivar amplification after importation and cultivar trials in frost-prone northern New Mexico. Grafting success was related to not only grafting techniques but also climate factors. Bark grafting, whip/tongue grafting, and cleft grafting were commonly used in nurseries. Low temperatures had a critical role in jujube grafting success in marginal regions and were more important than the grafting technique. If frost occurs before or near the leafing time, then grafting should be delayed until the rootstocks are determined to be healthy and alive. If frost occurs after grafting, then grafting failure and/or thin and small plant percentages increased. If only branchlets appear after grafting, then pinching branchlets could stimulate new shoot growth.


2022 ◽  
Vol 9 ◽  
Author(s):  
Peijun Ju ◽  
Wenchao Yan ◽  
Jianliang Liu ◽  
Xinwei Liu ◽  
Liangfeng Liu ◽  
...  

As a sensitive, observable, and comprehensive indicator of climate change, plant phenology has become a vital topic of global change. Studies about plant phenology and its responses to climate change in natural ecosystems have drawn attention to the effects of human activities on phenology in/around urban regions. The key factors and mechanisms of phenological and human factors in the process of urbanization are still unclear. In this study, we analyzed variations in xylophyta phenology in densely populated cities during the fast urbanization period of China (from 1963 to 1988). We assessed the length of the growing season affected by the temperature and precipitation. Temperature increased the length of the growing season in most regions, while precipitation had the opposite effect. Moreover, the plant-growing season is more sensitive to preseason climate factors than to annual average climate factors. The increased population reduced the length of the growing season, while the growing GDP increased the length of the growing season in most regions (8 out of 13). By analyzing the impact of the industry ratio, we found that the correlation between the urban management of emerging cities (e.g., Chongqing, Zhejiang, and Guizhou) and the growing season is more significant, and the impact is substantial. In contrast, urban management in most areas with vigorously developed heavy industry (e.g., Heilongjiang, Liaoning, and Beijing) has a weak and insignificant effect on plant phenology. These results indicate that different urban development patterns can influence urban plant phenology. Our results provide some support and new thoughts for future research on urban plant phenology.


2022 ◽  
Author(s):  
Omololu Ogunseye ◽  
Kamar Oladepo

Abstract. This study investigates the variational effect of climate factors on the productivity of a basin-type solar still during the harmattan season under the tropical savanna climate. The study was extended to examine the influences of selected climatic, operational, and design (COD) parameters on productivity. Additionally, the efficiency of solar still in removing water impurities during harmattan was also investigated. Explorative data and statistical analysis, and laboratory testing methods were used for these investigations. Results show that seasonal effects of harmattan can either increase or lower productivity. The effect of wind speed on productivity was not clearly defined during the harmattan season. Although high irradiation is essential for increased productivity, its effect is modified by other factors. Water temperature is the most significant to productivity amongst selected factors studied via the design of experiment (DOE). Moreover, the effect of harmattan on the water quality produced was not established. The main contribution of this work is the insights generated for both qualitative and quantitative reliability performance of a basin-type solar still under prevailing climate conditions.


2022 ◽  
Vol 14 (2) ◽  
pp. 699
Author(s):  
Sheng Wang ◽  
Wenjing Li ◽  
Qing Li ◽  
Jinfeng Wang

The contradiction between urban expansion and ecological protection in the Beijing-Tianjin-Hebei region (BTH) is increasingly acute, which has become one of the main problems restricting regional development, and sustainable development of ecosystem services is the key to increasing human well-being. Based on GIS platform and multiple models, this paper analyzes the temporal and spatial variation characteristics of four key ecosystem services (water conservation, soil conservation, habitat quality, and plant net primary productivity) in different ecological regions of BTH in recent 20 years, quantifies the impact of different climate factors and land use change on ecosystem services (ESs), and discusses the primary ecosystem hotspots and ecological security pattern. The results showed that the interannual variation of water conservation (WC) and plant net primary productivity (NPP) increased from 2000 to 2020, while the change of soil conservation (SC) was not obvious, which was mainly controlled by climate factors, WC and SC were more affected by precipitation, and temperature was the key factor affecting NPP. Habitat quality (HQ) presented a significant downward trend; it was mainly attributed to the deterioration of ecological environment caused by accelerated urbanization expansion. According to hotspot analysis, it could be found that WC was the fastest-growing ecosystem service function in BTH, and NPP would become the factor with the greatest contribution to ecological importance in the future. The important protected areas and main ecological sources of ecological security pattern were mainly distributed in Yanshan-Taihang mountain area, which was consistent with the key areas of ecosystem services. In this study, the temporal and spatial differences of ecosystem service in BTH were demonstrated in a more intuitive way and provided scientific guidance for decision makers to formulate effective ecological protection policies in different regions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiale Yu ◽  
Lingfan Wan ◽  
Guohua Liu ◽  
Keming Ma ◽  
Hao Cheng ◽  
...  

Alpine grassland is the main ecosystem on the Qinghai-Tibet Plateau (QTP). Degradation and restoration of alpine grassland are related to ecosystem function and production, livelihood, and wellbeing of local people. Although a large number of studies research degraded alpine grassland, there are debates about degradation patterns of alpine grassland in different areas and widely applicable ecological restoration schemes due to the huge area of the QTP. In this study, we used the meta-analysis method to synthesize 80 individual published studies which were conducted to examine aboveground and underground characteristics in non-degradation (ND), light degradation (LD), moderate degradation (MD), heavy degradation (HD), and extreme degradation (ED) of alpine grassland on the QTP. Results showed that aboveground biomass (AGB), belowground biomass (BGB), Shannon-Wiener index (H′), soil moisture (SM), soil organic carbon (SOC), soil total nitrogen (TN), and available nitrogen (AN) gradually decreased along the degradation gradient, whereas soil bulk density (BD) and soil pH gradually increased. In spite of a tendency to soil desertification, losses of other soil nutrients and reduction of enzymes, there was no linear relationship between the variations with degradation gradient. Moreover, the decreasing extent of TN was smaller in areas with higher precipitation and temperature, and the decreasing extent of AGB, SOC, and TN was larger in areas with a higher extent of corresponding variables in the stage of ND during alpine grassland degradation. These findings suggest that in areas with higher precipitation and temperature, reseeding and sward cleavage can be used for restoration on degraded alpine grassland. Fencing and fertilization can be used for alpine grassland restoration in areas with lower precipitation and temperature. Microbial enzymes should not be used to restore degraded alpine grassland on a large scale on the QTP without detailed investigation and analysis. Future studies should pay more attention to the effects of climate factors on degradation processes and specific ecological restoration strategies in different regions of the QTP.


2021 ◽  
Vol 145 (11-12) ◽  
pp. 557-566
Author(s):  
Zafer Yücesan ◽  
Derya Bayram

In this study, the effects of different sowing environment (greenhouse and nursery), pretreatment (cold moist stratification), different sowing time (autumn, spring and summer) and some climate factors (air temperature, relative air humidity, soil temperature and soil moisture) on the germination of Acer pseudoplatanus L. seeds were studied. Seeds were harvested from the tree located in the Karadeniz Technical University campus. Three different germination trials were carried out; (1) direct sowing in autumn after seed collection (Control), (2) sowing stratified seeds in spring (Stratification-1) and (3) sowing stratified seeds in summer (Stratification-2). During the germination trial processes, air temperature, relative air humidity, soil temperature and soil moisture were measured periodicaly. Thus, the germination percentage changes in different sowing environments have been established on the basis of some climate factors. Higher germination percentages were obtained in the autumn (Control) compared to the spring (Stratification-1) and summer (Stratification-2) sowings. The highest percentages of germination were ­determined in the control trials (70% in greenhouse and 58% in nursery). Obtained germination results based on different sowing times revealed secondary dormancy in Acer pseudoplatanus L. seeds. It has been determined that the mean germination time in the greenhouse (12 days) was shorter than the mean germination time in the nursery (18 days). In addition, the obtained results showed that stratification and sowing time have a positive effect on the mean germination time in the greenhouse. Because of getting the best germination rates, keeping some climate ­factors constant (21.0-24.9 °C air temperature; 17.0-19.9 °C soil temperature; 63.0-68.9% relative air humidity; 60.0-67.9% soil moisture) during the vegetative propagation practices in the greenhouse, should affect mass ­seedling production in Acer pseudoplatanus L.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dengpan Xiao ◽  
Yi Zhang ◽  
Huizi Bai ◽  
Jianzhao Tang

Crop phenology is the process of crop growth and yield formation, which is largely driven by climatic conditions. It is vital to investigate the shifts in crop phenological processes in response to climate variability. Previous studies often only explored the response of a single crop phenology to climate change, and lacked comparative studies on the climate response in different crop phenology. We intend to investigate the trends in phenological change of three typical crops (i.e., maize, rice and soybean) in Northeast China (NEC) and their response to climate change during 1981–2010. Its main purpose is to reveal the differences in the sensitivity of different crop phenology to key climate factors [e.g., mean temperature (T), accumulated precipitation (AP) and accumulated sunshine hours (AS) during the crop growth period]. We found that the three crops have different phenological changes and varying ranges, and significant spatial heterogeneity in phenological changes. The results indicated that the lengths of different crop growth stages [e.g., the vegetative growth period (VGP), the reproductive growth period (RGP) and the whole growth period (WGP)] were negatively correlated with T, especially in VGP and WGP. However, the lengths of growth period of the three crops were positively correlated with AP and AS. For each 1°C increase in T, the number of days shortened in WGP (about 5 days) was the largest, and that in RGP (less than 2 days) was the smallest. Therefore, the increases in T during past 3 decades have significantly shortened VGP and WGP of three crops, but had slight and inconsistent effects on RGP. Moreover, changes in AP has slight impact on the growth periods of maize and rice, and significantly shortened RGP and WGP of soybean. Changes in AS exerted important and inconsistent effects on the phenology of three crops. This study indicated that there are significant differences in the sensitivity and response of different crop phenology to climate factors. Therefore, in evaluating the response and adaptation of crops to climate change, comparison and comprehensive analysis of multiple crops are helpful to deeply understand the impact of climate change on crop production.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun-Ming Zhang ◽  
Min-Li Song ◽  
Zhen-Jian Li ◽  
Xiang-Yong Peng ◽  
Shang Su ◽  
...  

Akebia quinata, also known as chocolate vine, is a creeping woody vine which is used as Chinese herbal medicine, and found widely distributed in East Asia. At present, its wild resources are being constantly destroyed. This study aims to provide a theoretical basis for the resource protection of this plant species by analyzing the possible changes in its geographic distribution pattern and its response to climate factors. It is the first time maximum entropy modeling (MaxEnt) and ArcGIS software have been used to predict the distribution of A. quinata in the past, the present, and the future (four greenhouse gas emission scenarios, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Through the prediction results, the impact of climate change on the distribution of A. quinata and the response of A. quinata to climate factors were analyzed. The results showed that the most significant climatic factor affecting the distribution pattern of A. quinata was the annual precipitation. At present, the suitable distribution regions of A. quinata are mainly in the temperate zone, and a few suitable distribution regions are in the tropical zone. The medium and high suitable regions are mainly located in East Asia, accounting for 51.1 and 81.7% of the worldwide medium and high suitable regions, respectively. The migration of the geometric center of the distribution regions of A. quinata in East Asia is mainly affected by the change of distribution regions in China, and the average migration rate of the geometric center in each climate scenario is positively correlated with the level of greenhouse gas emission scenario.


Sign in / Sign up

Export Citation Format

Share Document