scholarly journals Brain injury environment critically influences the connectivity of transplanted neurons

2021 ◽  
Author(s):  
Sofia Grade ◽  
Judith Thomas ◽  
Yvette Zarb ◽  
Manja Thorwirth ◽  
Karl-Klaus Conzelmann ◽  
...  

Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative connectomics unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain, versus exuberant after trauma. In the latter, excessive synapse pruning follows the initial overshoot of connectivity resulting in only a few connections left. Proteomic profiling identifies candidate molecules involved in the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.

2019 ◽  
Vol 18 (2) ◽  
pp. 307-317
Author(s):  
Robert Ciszek ◽  
Pedro Andrade ◽  
Jesse Tapiala ◽  
Asla Pitkänen ◽  
Xavier Ekolle Ndode-Ekane

AbstractDisabilities resulting from traumatic brain injury (TBI) strongly correlate with the cytoarchitectonic part of the brain damaged, lesion area, and type of lesion. We developed a Web application to estimate the location of the lesion on mouse cerebral cortex caused by TBI induced by lateral fluid-percussion injury. The application unfolds user-determined TBI lesion measurements, e.g., from histologic sections to a reference template, and estimates the total lesion area, including the percentage of cortex damaged in different cytoarchitectural cortical regions. The resulting lesion can be visualized on a two-dimensional map of mouse cerebral cortex. The application also visualizes the development of the lesion over time when measurements from multiple time points are available. The web application was validated by comparing its performance to the manual method. The total area of the cortical lesion was similar between the manual (9.19 ± 0.66 mm2, range 4.25–14.93 mm2) and the automated analysis (9.27 ± 0.66 mm2, range 4.50–15.10 mm2) (p = 0.938). The results of the manual and automated analyses were strongly correlated (r = 0.999, p < 0.0001, Pearson correlation). The lesion localized in the same cytoarchitectonic regions when the unfolded map from the automated method was superimposed onto the map obtained using the manual method. The Web application-automated method is faster than the manual method in generating unfolded cortical lesion maps. The accuracy of the presented automated method in determining the anteroposterior level and outlining the lesion is equal to or greater than that of the manual method. Our application provides a novel tool for accurately quantifying and visualizing TBI lesions on mouse cerebral cortex.


2007 ◽  
Vol 7 (4) ◽  
pp. 405-412 ◽  
Author(s):  
Yuh-Shin Chang ◽  
Anastassia Stoykova ◽  
Kamal Chowdhury ◽  
Peter Gruss

2019 ◽  
Vol 313 ◽  
pp. 37-48 ◽  
Author(s):  
Zhihao Chen ◽  
Hong Wang ◽  
Jianjun Zhong ◽  
Junqing Yang ◽  
Rami Darwazeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document