scholarly journals Proteome-wide cellular thermal shift assay reveals novel crosstalk between brassinosteroid and auxin signaling

2021 ◽  
Author(s):  
Qing Lu ◽  
Yonghong Zhang ◽  
Joakim Hellner ◽  
Xiangyu Xu ◽  
Jarne Pauwels ◽  
...  

Despite the growing interest in using chemical genetics in plant research, small-molecule target identification remains a major challenge. The cellular thermal shift assay coupled with high-resolution mass-spectrometry (CETSA MS) that monitors changes in the thermal stability of proteins caused by their interactions with small molecules, other proteins, or post-translational modifications allows the identification of drug targets, or the study of protein-metabolite and protein-protein interactions mainly in mammalian cells. To showcase the applicability of this method in plants, we applied CETSA MS to intact Arabidopsis thaliana cells and identified the thermal proteome of the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, bikinin. A comparison between the thermal- and the phospho-proteomes of bikinin revealed the auxin efflux carrier PIN-FORMED1 (PIN1) as a novel substrate of the Arabidopsis GSK3s that negatively regulate the brassinosteroid signaling. We established that PIN1 phosphorylation by the GSK3s is essential for maintaining its intracellular polarity that is required for auxin-mediated regulation of vascular patterning in the leaf thus, revealing a novel crosstalk between brassinosteroid and auxin signaling.

Science ◽  
2013 ◽  
Vol 341 (6141) ◽  
pp. 84-87 ◽  
Author(s):  
Daniel Martinez Molina ◽  
Rozbeh Jafari ◽  
Marina Ignatushchenko ◽  
Takahiro Seki ◽  
E. Andreas Larsson ◽  
...  

The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.


2019 ◽  
Vol 25 (2) ◽  
pp. 207-214
Author(s):  
Adrien Herledan ◽  
Marine Andres ◽  
Aurore Lejeune-Dodge ◽  
Florence Leroux ◽  
Alexandre Biela ◽  
...  

In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer’s disease. CETSA—acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug–target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Joseph Shaw ◽  
Mathew Leveridge ◽  
Charlotta Norling ◽  
Jakob Karén ◽  
Daniel Martinez Molina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document