target engagement
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 269)

H-INDEX

27
(FIVE YEARS 8)

2022 ◽  
Vol 14 (627) ◽  
Author(s):  
Wenping Li ◽  
Yuchuan Wang ◽  
Talakad G. Lohith ◽  
Zhizhen Zeng ◽  
Ling Tong ◽  
...  

[ 11 C]MK-6884 is an M4R-specific PET tracer for quantifying target engagement in brain and providing insights into AD neuropathology.


2022 ◽  
Author(s):  
Xuan Yang ◽  
Rebekah J Dickmander ◽  
Armin Bayati ◽  
Sharon A Taft-Benz ◽  
Jeffrey L Smith ◽  
...  

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine β-coronaviruses (β-CoV). The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-CoV replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-β-CoV drugs.


2021 ◽  
Author(s):  
Olov Wallner ◽  
Armando Cázares-Körner ◽  
Emma Rose Scaletti ◽  
Geoffrey Masuyer ◽  
Tove Bekkhus ◽  
...  

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G:C→T:A transversion, base removal is of the utmost importance for cells to ensure genomic integrity. For cells with elevat-ed levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on a high-throughput screen, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising bind-ing mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


2021 ◽  
Author(s):  
Erin Gaughan ◽  
Tariq Sethi ◽  
Tom Quinn ◽  
Nikhil Hirani ◽  
Andrew Mills ◽  
...  

Rationale: High galectin-3 levels predict poor outcomes in patients with COVID-19. Galectin-3 activates monocytes and macrophages which are directly implicated in COVID-19 immunopathology and the cytokine storm. GB0139 is a potent thiodigalactoside galectin-3 inhibitor and may reduce the severe effects of the disease. We report safety and pharmacokinetics and pharmacodynamics of the inhaled galectin-3 inhibitor, GB0139, and assess clinical outcomes and key systemic inflammatory biomarkers in hospitalised patients with COVID-19 (ClinicalTrials.gov/EudraCT identifier: NCT04473053/2020-002230-32). Methods: Adults with COVID-19 requiring oxygen, and with pneumonitis on x-ray, were randomised to receive standard of care (SOC; including dexamethasone; n=21) or SOC plus 10 mg GB0139 twice daily for 48 hours, then once daily for ≤14 days (n=20). Results: Patients aged 27–87 years were enrolled from July 2020; the final patient completed the 90-day follow-up in April 2021. GB0139+SOC was well tolerated with no treatment-related serious adverse events reported. Incidences of adverse events were similar between treatment arms (40 with GB0139+SOC vs 35 with SOC). Plasma GB0139 was measurable in all patients after inhaled exposure, with moderate interpatient variability, and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc over days 2–7: p=0·0099 vs SOC). Rate of decline in fraction of inspired oxygen (%) requirement was significantly greater in the GB0139+SOC arm with a posterior mean difference of −1 ·51 (95% highest posterior density: −2·90, −0·189) versus SOC. Plasma levels of biomarkers associated with inflammation, coagulopathy, major organ function and fibrosis showed a downward trend versus SOC. Conclusions: GB0139+SOC was well tolerated and achieved clinically relevant plasma concentrations and target engagement. This, and the reduction in markers associated with inflammatory, coagulation, fibrosis, and reduction in inspired oxygen (%) over SOC alone, indicates the therapeutic potential for inhaled GB0139 in hospitalised patients with COVID-19.


2021 ◽  
Author(s):  
Rafael Couñago ◽  
Rebeka Fanti ◽  
Stanley Vasconcelos ◽  
Carolina Catta-Preta ◽  
Jaryd Sullivan ◽  
...  

Abstract A major challenge in antibiotics drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetics binding parameters of antibiotics to their molecular targets in live bacteria. We validated this approach for a known antibiotic target, dihydrofolate reductase, using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of similar target engagement assays to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.


2021 ◽  
Author(s):  
Anja Vogelmann ◽  
Matthias Schiedel ◽  
Nathalie Wössner ◽  
Annika Merz ◽  
Daniel Herp ◽  
...  

Sirtuin2 (Sirt2) with its NAD+-dependent deacetylase and defatty-acylase activities plays a central role in the regulation of specific cellular functions. Dysregulation of Sirt2 activity has been associated with the pathogenesis of many diseases, thus making Sirt2 a promising target for pharmaceutical intervention. Herein, we present new high affinity Sirt2 selective Sirtuin-Rearranging Ligands (SirReals) that inhibit both Sirt2-dependent deacetylation and defatty-acylation in vitro and in cells. We show that dual inhibition of Sirt2 results in strongly reduced levels of the oncogene c-Myc and an inhibition of cancer cell migration. Furthermore, we describe the development of a NanoBRET-based assay for Sirt2, thereby providing a method to study cellular target engagement for Sirt2 in a straightforward and accurately quantifiable manner. Applying this assay, we could confirm cellular Sirt2 binding of our new Sirt2 inhibitors and correlate their anticancer effects with their cellular target engagement.


2021 ◽  
Author(s):  
Katherine M Wilson ◽  
Eszter Katona ◽  
Idoia Glaria ◽  
Imogen J Swift ◽  
Aitana Sogorb-Esteve ◽  
...  

A GGGGCC repeat expansion in the C9orf72 gene is the most common cause of genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). As potential therapies targeting the repeat expansion are now entering clinical trials, sensitive biomarker assays of target engagement are urgently required. We utilised the single molecule array (Simoa) platform to develop an immunoassay for measuring poly(GP) dipeptide repeat proteins (DPRs) generated by the repeat expansion in CSF of people with C9orf72-associated FTD/ALS. We show the assay to be highly sensitive and robust, passing extensive qualification criteria including low intra- and inter-plate variability, a high precision and accuracy in measuring both calibrators and samples, dilutional parallelism, tolerance to sample and standard freeze-thaw and no haemoglobin interference. We used this assay to measure poly(GP) DPRs in the CSF of samples collected through the Genetic FTD Initiative. We found it had 100% specificity and 100% sensitivity and a large window for detecting target engagement, as the C9orf72 CSF sample with the lowest poly(GP) signal had 8-fold higher signal than controls and on average values from C9orf72 samples were 38-fold higher than controls, which all fell below the lower limit of quantification of the assay. These data indicate that a Simoa-based poly(GP) DPR assay is suitable for use in clinical trials to determine target engagement of therapeutics aimed at reducing C9orf72 repeat-containing transcripts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jonathan G Van Vranken ◽  
Jiaming Li ◽  
Dylan C Mitchell ◽  
José Navarrete-Perea ◽  
Steven P Gygi

Recent advances in mass spectrometry (MS) have enabled quantitative proteomics to become a powerful tool in the field of drug discovery, especially when applied toward proteome-wide target engagement studies. Similar to temperature gradients, increasing concentrations of organic solvents stimulate unfolding and precipitation of the cellular proteome. This property can be influenced by physical association with ligands and other molecules, making individual proteins more or less susceptible to solvent-induced denaturation. Herein, we report the development of proteome-wide solvent shift assays by combining the principles of solvent-induced precipitation (Zhang et al., 2020) with modern quantitative proteomics. Using this approach, we developed solvent proteome profiling (SPP), which is capable of establishing target engagement through analysis of SPP denaturation curves. We readily identified the specific targets of compounds with known mechanisms of action. As a further efficiency boost, we applied the concept of area under the curve analysis to develop solvent proteome integral solubility alteration (solvent-PISA) and demonstrate that this approach can serve as a reliable surrogate for SPP. We propose that by combining SPP with alternative methods, like thermal proteome profiling, it will be possible to increase the absolute number of high-quality melting curves that are attainable by either approach individually, thereby increasing the fraction of the proteome that can be screened for evidence of ligand binding.


2021 ◽  
Author(s):  
Rasel Al-Amin ◽  
Lars Johansson ◽  
Eldar Abdurakhmanov ◽  
Nils Landegren ◽  
Liza Löf ◽  
...  

Abstract Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to a panel of fixed adherent cells agreed with expectations from expression profiles of the cells. These findings were corroborated by competition experiments using kinase inhibitors with overlapping and non-overlapping target specificities, and translated to pathology tissue sections. We also introduce a proximity ligation variant of TEMA in which these drug-DNA conjugates are combined with antibody-DNA conjugates to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and tissues.


Sign in / Sign up

Export Citation Format

Share Document