scholarly journals pixOL: pixel-wise dipole-spread function engineering for simultaneously measuring the 3D orientation and 3D localization of dipole-like emitters

2021 ◽  
Author(s):  
Tingting Wu ◽  
Jin Lu ◽  
Matthew D. Lew

Interactions between biomolecules are characterized by both where they occur and how they are organized, e.g., the alignment of lipid molecules to form a membrane. However, spatial and angular information are mixed within the image of a fluorescent molecule-the microscopy's dipole spread function (DSF). We demonstrate the pixOL algorithm for simultaneously optimizing all pixels within a phase mask to produce an engineered Green's tensor-the dipole extension of point-spread function engineering. The pixOL DSF achieves optimal precision for measuring simultaneously the 3D orientation and 3D location of a single molecule, i.e., 1.14 degree orientation, 0.24 sr wobble angle, 8.17 nm lateral localization, and 12.21 nm axial localization precisions over an 800-nm depth range using 2500 detected photons. The pixOL microscope accurately and precisely resolves the 3D positions and 3D orientations of Nile red within a spherical supported lipid bilayer, resolving both membrane defects and differences in cholesterol concentration, in 6 dimensions.

2021 ◽  
Author(s):  
Tianben Ding ◽  
Matthew D. Lew

AbstractWithin condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF is able to obtain 12 nm localization precision, 4-8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics of Nile red (NR) within supported lipid bilayers, and the distinct orientation signatures of NR in contact with amyloid-beta fibrils, oligomers, and tangles. The unparalleled sensitivity of the vortex PSF transforms single-molecule microscopes into nanoscale orientation imaging spectrometers, where the orientations and wobbles of individual probes reveal structures and organization of soft matter that are nearly impossible to perceive using molecular positions alone.


2020 ◽  
Author(s):  
Christiaan N. Hulleman ◽  
Rasmus Ø. Thorsen ◽  
Sjoerd Stallinga ◽  
Bernd Rieger

We have developed an engineered Point Spread Function (PSF) to enable the simultaneous estimation of dipole orientation, 3D position and degree of rotational constraint of single-molecule emitters from a single 2D focal plane. Besides giving access to orientation information, the Vortex PSF along with the vectorial PSF fitter avoids localization bias common in localization microscopy for fixed dipole emitters. We demonstrate this technique on reorienting single-molecules and using binding-activated localization microscopy on DNA intercalators, corroborating perpendicular azimuthal angles to the DNA axis for in-plane emitters but find a non-uniform distribution as a function of the polar angle. The Vortex PSF is realized by an affordable glass phase mask and has a compact footprint that can easily be combined with localization microscopy techniques on rotationally constrained emitters.


2014 ◽  
Author(s):  
Ana Doblas ◽  
Sharon V. King ◽  
Nurmohammed Patwary ◽  
Genaro Saavedra ◽  
Manuel Martínez-Corral ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gang Wen ◽  
Simin Li ◽  
Linbo Wang ◽  
Xiaohu Chen ◽  
Zhenglong Sun ◽  
...  

AbstractStructured illumination microscopy (SIM) has become a widely used tool for insight into biomedical challenges due to its rapid, long-term, and super-resolution (SR) imaging. However, artifacts that often appear in SIM images have long brought into question its fidelity, and might cause misinterpretation of biological structures. We present HiFi-SIM, a high-fidelity SIM reconstruction algorithm, by engineering the effective point spread function (PSF) into an ideal form. HiFi-SIM can effectively reduce commonly seen artifacts without loss of fine structures and improve the axial sectioning for samples with strong background. In particular, HiFi-SIM is not sensitive to the commonly used PSF and reconstruction parameters; hence, it lowers the requirements for dedicated PSF calibration and complicated parameter adjustment, thus promoting SIM as a daily imaging tool.


2017 ◽  
Author(s):  
Koen J.A. Martens ◽  
Arjen N. Bader ◽  
Sander Baas ◽  
Bernd Rieger ◽  
Johannes Hohlbein

AbstractWe present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more than 3 million localizations per second on a standard multi-core CPU with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function (PSF) to two phase vectors (phasors) by calculating the first Fourier coefficients in both x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.


2016 ◽  
Author(s):  
Keith A. Wernsing ◽  
Jeffrey J. Field ◽  
Scott R. Domingue ◽  
Alyssa M. Allende-Motz ◽  
Keith F. DeLuca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document