scholarly journals Head-Direction drift in rat pups is consistent with an angular path-integration process

2017 ◽  
Author(s):  
Gilad Tocker ◽  
Eli Borodach ◽  
Tale L. Bjerknes ◽  
May-Britt Moser ◽  
Edvard I. Moser ◽  
...  

SummaryThe sense of direction is a vital computation, whose neural basis is considered to be carried out by head-direction cells. One way to estimate head-direction is by integrating head angular-velocity over time. However, this process results in error accumulation resembling a random walk, proportional to , which constitutes a mark for a path integration process. In the present study we analyzed previously recorded data to quantify the drift in head-direction cells of rat pups before and after eye-opening. We found that in rat pups before eye-opening the drift propagated as a random walk, while in rats after eye-opening the drift was lower. This suggests that a path-integration process underlies the estimation of head-direction, such that before eye-opening the head-direction system runs in an open-loop manner and accumulates error. After eye-opening, visual-input, such as arena shape, helps to correct errors and thus compute the sense of direction accurately.

2015 ◽  
Vol 25 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Tale L. Bjerknes ◽  
Rosamund F. Langston ◽  
Ingvild U. Kruge ◽  
Edvard I. Moser ◽  
May-Britt Moser

1996 ◽  
Vol 199 (1) ◽  
pp. 163-164
Author(s):  
DF Sherry

Few ideas have had a greater impact on the study of navigation at the middle scale than the theory of the cognitive map. As papers in this section show, current views of the cognitive map range from complete rejection of the idea (Bennett, 1996) to new proposals for the behavioural and neural bases of the cognitive map (Gallistel and Cramer, 1996; McNaughton et al. 1996). The papers in this section also make it clear that path integration has taken centre stage in theorizing about navigation at the middle scale. Path integration is the use of information generated by locomotion to determine the current distance and direction to the origin of the path. Etienne (1980) provided one of the first experimental demonstrations of path integration by a vertebrate, and in this section Etienne et al. (1996) describe recent research with animals and humans on the interaction between path integration and landmark information. Path integration is also the fundamental means of navigation in the model described by Gallistel and Cramer (1996). McNaughton et al. (1996) suggest that the neural basis of path integration is found in the place cells and head direction cells of the hippocampus and associated brain regions.


Hippocampus ◽  
2009 ◽  
Vol 19 (5) ◽  
pp. 456-479 ◽  
Author(s):  
John L. Kubie ◽  
André A. Fenton

Author(s):  
Stanley Heinze

Navigation is the ability of animals to move through their environment in a planned manner. Different from directed but reflex-driven movements, it involves the comparison of the animal’s current heading with its intended heading (i.e., the goal direction). When the two angles don’t match, a compensatory steering movement must be initiated. This basic scenario can be described as an elementary navigational decision. Many elementary decisions chained together in specific ways form a coherent navigational strategy. With respect to navigational goals, there are four main forms of navigation: explorative navigation (exploring the environment for food, mates, shelter, etc.); homing (returning to a nest); straight-line orientation (getting away from a central place in a straight line); and long-distance migration (seasonal long-range movements to a location such as an overwintering place). The homing behavior of ants and bees has been examined in the most detail. These insects use several strategies to return to their nest after foraging, including path integration, route following, and, potentially, even exploit internal maps. Independent of the strategy used, insects can use global sensory information (e.g., skylight cues), local cues (e.g., visual panorama), and idiothetic (i.e., internal, self-generated) cues to obtain information about their current and intended headings. How are these processes controlled by the insect brain? While many unanswered questions remain, much progress has been made in recent years in understanding the neural basis of insect navigation. Neural pathways encoding polarized light information (a global navigational cue) target a brain region called the central complex, which is also involved in movement control and steering. Being thus placed at the interface of sensory information processing and motor control, this region has received much attention recently and emerged as the navigational “heart” of the insect brain. It houses an ordered array of head-direction cells that use a wide range of sensory information to encode the current heading of the animal. At the same time, it receives information about the movement speed of the animal and thus is suited to compute the home vector for path integration. With the help of neurons following highly stereotypical projection patterns, the central complex theoretically can perform the comparison of current and intended heading that underlies most navigation processes. Examining the detailed neural circuits responsible for head-direction coding, intended heading representation, and steering initiation in this brain area will likely lead to a solid understanding of the neural basis of insect navigation in the years to come.


2001 ◽  
Vol 10 (2) ◽  
pp. 216-224 ◽  
Author(s):  
Niels H. Bakker ◽  
Peter J. Werkhoven ◽  
Peter O. Passenier

When moving around in the world, humans can use the motion sensations provided by their kinesthetic, vestibular, and visual senses to maintain their sense of direction. Previous research in virtual environments (VEs) has shown that this so-called path integration process is inaccurate in the case that only visual motion stimuli are present, which may lead to disorientation. In an experiment, we investigated whether participants can calibrate this visual path integration process for rotations; in other words, can they learn the relation between visual flow and the angle that they traverse in the VE? Results show that, by providing participants with knowledge of results (KR), they can indeed calibrate the biases in their path integration process, and also maintain their improved level of performance on a retention test the next day.


Sign in / Sign up

Export Citation Format

Share Document