Oxford Research Encyclopedia of Neuroscience
Latest Publications


TOTAL DOCUMENTS

128
(FIVE YEARS 72)

H-INDEX

5
(FIVE YEARS 3)

Published By Oxford University Press

9780190264086

Author(s):  
Arthur English

Despite the intrinsically greater capacity for axons to regenerate in injured peripheral nerves than after injury to the central nervous system, functional recovery after most nerve injuries is very poor. A need for novel treatments that will enhance axon regeneration and improve recovery is substantial. Several such experimental treatments have been studied, each based on part of the stereotypical cellular responses that follow a nerve injury. Genetic manipulations of Schwann cells that have transformed from a myelinating to a repair phenotype that either increase their production of axon growth-promoting molecules, decrease production of inhibitors, or both result in enhanced regeneration. Local or systemic application of these molecules or small molecule mimetics of them also will promote regeneration. The success of treatments that stimulate axonal protein synthesis at the site of the nerve injury and in the growing axons, an early and important response to axon injury, is significant, as is that of manipulations of the types of immune cells that migrate into the injury site or peripheral ganglia. Modifications of the extracellular matrix through which the regenerating axons course, including the stimulation of new blood vessel formation, promotes the navigation of nascent regenerating neurites past the injury site, resulting in greater axon regeneration. Experimental induction of expression of regeneration associated gene activity in the cell bodies of the injured neurons is especially useful when regenerating axons must regenerate over long distances to reinnervate targets. The consistently most effective experimental approach to improving axon regeneration in peripheral nerves has been to increase the activity of the injured neurons, either through electrical, optical, or chemogenetic stimulation or through exercise. These activity-dependent experimental therapies show greatest promise for translation to use in patients.


Author(s):  
Louisa J. Rinaldi

Synesthesia is a neurodevelopmental condition that causes 4.4% of the population to experience the world differently. For these individuals certain stimuli (e.g., letters of the alphabet) trigger a secondary experience (e.g., color perception). This process is automatic and remains consistent over time. Tests for measuring synesthesia have successfully built on this principle of synesthetic associations being consistent over time, and using this method a number of studies have investigated the heritability of the condition, cognitive differences that synesthetes have compared with non-synesthetes, and the neurological architecture of synesthete brains. These measures have largely focused on adult synesthetes for whom the condition is already fully developed. Since 2009 researchers have begun to also investigate childhood synesthesia, which has helped to advance our understanding of how this condition emerges. Drawing on both adult and child studies, we can better understand the neurological and cognitive implications of a lifetime of experiencing synesthetic associations.


Author(s):  
Mathew T. Summers ◽  
Malak El Quessny ◽  
Maria B. Feller

Motion is a key feature of the sensory experience of visual animals. The mammalian retina has evolved a number of diverse motion sensors to detect and parse visual motion into behaviorally relevant neural signals. Extensive work has identified retinal outputs encoding directional and nondirectional motion, and the intermediate circuitry underlying this tuning. Detailed circuit mechanism investigation has established retinal direction selectivity in particular as a model system of neural computation.


Author(s):  
Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.


Author(s):  
Taylor Follansbee ◽  
Mirela Iodi Carstens ◽  
E. Carstens

Pain is defined as “An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage,” while itch can be defined as “an unpleasant sensation that evokes the desire to scratch.” These sensations are normally elicited by noxious or pruritic stimuli that excite peripheral sensory neurons connected to spinal circuits and ascending pathways involved in sensory discrimination, emotional aversiveness, and respective motor responses. Specialized molecular receptors expressed by cutaneous nerve endings transduce stimuli into action potentials conducted by C- and Aδ-fiber nociceptors and pruriceptors into the outer lamina of the dorsal horn of the spinal cord. Here, neurons selectively activated by nociceptors, or by convergent input from nociceptors, pruriceptors, and often mechanoreceptors, transmit signals to ascending spinothalamic and spinoparabrachial pathways. The spinal circuitry for itch requires interneurons expressing gastrin-releasing peptide and its receptor, while spinal pain circuitry involves other excitatory neuropeptides; both itch and pain are transmitted by ascending pathways that express the receptor for substance P. Spinal itch- and pain-transmitting circuitry is segmentally modulated by inhibitory interneurons expressing dynorphin, GABA, and glycine, which mediate the antinociceptive and antipruritic effects of noxious counterstimulation. Spinal circuits are also under descending modulation from the brainstem rostral ventromedial medulla. Opioids like morphine inhibit spinal pain-transmitting circuits segmentally and via descending inhibitory pathways, while having the opposite effect on itch. The supraspinal targets of ascending pain and itch pathways exhibit extensive overlap and include the somatosensory thalamus, parabrachial nucleus, amygdala, periaqueductal gray, and somatosensory, anterior cingulate, insular, and supplementary motor cortical areas. Following tissue injury, enhanced pain is evoked near the injury (primary hyperalgesia) due to release of inflammatory mediators that sensitize nociceptors. Within a larger surrounding area of secondary hyperalgesia, innocuous mechanical stimuli elicit pain (allodynia) due to central sensitization of pain pathways. Pruriceptors can also become sensitized in pathophysiological conditions, such as dermatitis. Under chronic itch conditions, low-threshold tactile stimulation can elicit itch (alloknesis), presumably due to central sensitization of itch pathways, although this has not been extensively studied. There is considerable overlap in pain- and itch-signaling pathways and it remains unclear how these sensations are discriminated. Specificity theory states that itch and pain are separate sensations with their own distinct pathways (“labeled lines”). Selectivity theory is similar but incorporates the observation that pruriceptive neurons are also excited by algogenic stimuli that inhibit spinal itch transmission. In contrast, intensity theory states that itch is signaled by low firing rates, and pain by high firing rates, in a common sensory pathway. Finally, the spatial contrast theory proposes that itch is elicited by focal activation of a few nociceptors while activation of more nociceptors over a larger area elicits pain. There is evidence supporting each theory, and it remains to be determined how the nervous system distinguishes between pain and itch.


Author(s):  
Eric S. Wohleb

Stress is experienced when stimuli pose a perceived or actual threat to an organism. Exposure to a stressor initiates physiological and behavioral responses that are aimed at restoring homeostasis. In particular, stress activates the hypothalamic-pituitary-adrenal axis, leading to release of glucocorticoids, and engages the autonomic nervous system, causing release of norepinephrine. These “stress hormones” have widespread effects, because most cells express respective receptors that initiate cell-type-specific molecular signaling pathways. In the brain, acute stress promotes neuronal activation, resulting in alertness and adaptive behavioral responses. However, chronic or uncontrolled stress exposure can have deleterious effects on neuronal function, including loss of synaptic connections, which leads to behavioral and cognitive impairments. Stress responses also influence the function of brain-resident microglia and peripheral immune cells that interact with the brain, and alterations in these neuroimmune systems can contribute to the neurobiological and behavioral effects of chronic stress. Ongoing research is aimed at uncovering the molecular and cellular mechanisms that mediate stress effects on neuroimmune systems, and vice versa.


Author(s):  
Georgia E. Hodes

In the late 20th century, the discovery that the immune system and central nervous system were not autonomous revolutionized exploration of the mechanisms by which stress contributes to immune disorders and immune regulation contributes to mental illness. There is increasing evidence of stress as integrated across the brain and body. The immune system acts in concert with the peripheral nervous system to shape the brain’s perception of the environment. The brain in turn communicates with the endocrine and immune systems to guide their responses to that environment. Examining the groundwork of mechanisms governing communication between the body and brain will hopefully provide a better understanding of the ontogeny and symptomology of some mood disorders.


Author(s):  
Martha E. Bickford

Detailed studies of thalamic circuits have revealed many features that are shared across nuclei. For example, glutamatergic inputs to the thalamus can be placed into three categories based on the size of the synaptic terminals they form, their synaptic arrangements, and the postsynaptic responses they elicit. Remarkably, these three categories can be identified in most sensory nuclei of the dorsal thalamus. Likewise, in most sensory thalamic nuclei, circuits that release the neurotransmitter gamma aminobutyric acid (GABA) can be placed into two general categories based on their dendritic or axonal origins. Finally, similar cholinergic circuits have been identified across thalamic nuclei. The ultimate goal of examining the shared versus diverse features of thalamic circuits is to identify fundamental modules, mechanisms, and/or conceptual frameworks, in order to decipher thalamic function.


Author(s):  
Richard P. Tucker ◽  
Qizhi Gong

Animals use their olfactory system for the procurement of food, the detection of danger, and the identification of potential mates. In vertebrates, the olfactory sensory neuron has a single apical dendrite that is exposed to the environment and a single basal axon that projects to the central nervous system (i.e., the olfactory bulb). The first odorant receptors to be discovered belong to an enormous gene family encoding G protein-coupled seven transmembrane domain proteins. Odorant binding to these classical odorant receptors initiates a GTP-dependent signaling cascade that uses cAMP as a second messenger. Subsequently, additional types of odorant receptors using different signaling pathways have been identified. While most olfactory sensory neurons are found in the olfactory sensory neuroepithelium, others are found in specialized olfactory subsystems. In rodents, the vomeronasal organ contains neurons that recognize pheromones, the septal organ recognizes odorant and mechanical stimuli, and the neurons of the Grüneberg ganglion are sensitive to cool temperatures and certain volatile alarm signals. Within the olfactory sensory neuroepithelium, each sensory neuron expresses a single odorant receptor gene out of the large gene family; the axons of sensory neurons expressing the same odorant receptor typically converge onto a pair of glomeruli at the periphery of the olfactory bulb. This results in the transformation of olfactory information into a spatially organized odortopic map in the olfactory bulb. The axons originating from the vomeronasal organ project to the accessory olfactory bulb, whereas the axons from neurons in the Grüneberg ganglion project to 10 specific glomeruli found in the caudal part of the olfactory bulb. Within a glomerulus, the axons originating from olfactory sensory neurons synapse on the dendrites of olfactory bulb neurons, including mitral and tufted cells. Mitral cells and tufted cells in turn project directly to higher brain centers (e.g., the piriform cortex and olfactory tubercle). The integration of olfactory information in the olfactory cortices and elsewhere in the central nervous system informs and directs animal behavior.


Author(s):  
Victoria Luine

The demonstration of steroid binding proteins in brain areas outside of the hypothalamus was a key neuroendocrine discovery in the 1980s. These findings suggested that gonadal hormones, estradiol and testosterone, may have additional functions besides controlling reproduction through the hypothalamic–pituitary–gonadal axis (HPG) and that glucocorticoids may also influence neural functions not related to the hypothalamic–pituitary–adrenal axis (HPA). In the past 30 years, since the early 1990s, a body of neuroendocrine studies in animals has provided evidence for these hypotheses, and in 2020, it is generally accepted that steroid hormones exert robust influences over cognition—both learning and memory. Gonadal hormones, predominantly estrogens, enhance learning and memory in rodents and humans and influence cognitive processes throughout the lifespan. Gonadal hormones bind to classical nuclear estrogen receptors and to membrane receptors to influence cognition. In contrast to the generally positive effects of gonadal hormones on learning and memory, adrenal hormones (glucocorticoids in rodents or cortisol in primates) released during chronic stress have adverse effects on cognition, causing impairments in both learning and memory. However, emerging evidence suggests that impairments may be limited only to males, as chronic stress in females does not usually impair cognition and, in many cases, enhances it. The cognitive resilience of females to stress may result from interactions between the HPG and HPA axis, with estrogens exerting neuroprotective effects against glucocorticoids at both the morphological and neurochemical level. Overall, knowledge of the biological underpinnings of hormonal effects on cognitive function has enormous implications for human health and well-being by providing novel tools for mitigating memory loss, for treating stress-related disorders, and for understanding the bases for resilience versus susceptibility to stress.


Sign in / Sign up

Export Citation Format

Share Document