Head direction cells, grid cells, and the neural basis of spatial orientation

2011 ◽  
Author(s):  
Benjamin Joseph Clark
2014 ◽  
Vol 369 (1635) ◽  
pp. 20120516 ◽  
Author(s):  
Sheng-Jia Zhang ◽  
Jing Ye ◽  
Jonathan J. Couey ◽  
Menno Witter ◽  
Edvard I. Moser ◽  
...  

The mammalian space circuit is known to contain several functionally specialized cell types, such as place cells in the hippocampus and grid cells, head-direction cells and border cells in the medial entorhinal cortex (MEC). The interaction between the entorhinal and hippocampal spatial representations is poorly understood, however. We have developed an optogenetic strategy to identify functionally defined cell types in the MEC that project directly to the hippocampus. By expressing channelrhodopsin-2 (ChR2) selectively in the hippocampus-projecting subset of entorhinal projection neurons, we were able to use light-evoked discharge as an instrument to determine whether specific entorhinal cell groups—such as grid cells, border cells and head-direction cells—have direct hippocampal projections. Photoinduced firing was observed at fixed minimal latencies in all functional cell categories, with grid cells as the most abundant hippocampus-projecting spatial cell type. We discuss how photoexcitation experiments can be used to distinguish the subset of hippocampus-projecting entorhinal neurons from neurons that are activated indirectly through the network. The functional breadth of entorhinal input implied by this analysis opens up the potential for rich dynamic interactions between place cells in the hippocampus and different functional cell types in the entorhinal cortex (EC).


2001 ◽  
Vol 38-40 ◽  
pp. 1059-1065 ◽  
Author(s):  
Angelo Arleo ◽  
Wulfram Gerstner

2018 ◽  
Vol 91 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Gonzalo Tejera ◽  
Martin Llofriu ◽  
Alejandra Barrera ◽  
Alfredo Weitzenfeld

2020 ◽  
Vol 123 (4) ◽  
pp. 1392-1406 ◽  
Author(s):  
Juan Ignacio Sanguinetti-Scheck ◽  
Michael Brecht

The home is a unique location in the life of humans and animals. In rats, home presents itself as a multicompartmental space that involves integrating navigation through subspaces. Here we embedded the laboratory rat’s home cage in the arena, while recording neurons in the animal’s parasubiculum and medial entorhinal cortex, two brain areas encoding the animal’s location and head direction. We found that head direction signals were unaffected by home cage presence or translocation. Head direction cells remain globally stable and have similar properties inside and outside the embedded home. We did not observe egocentric bearing encoding of the home cage. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated toward the home. These effects appeared to be geometrical in nature rather than a home-specific distortion and were not dependent on explicit behavioral use of the home cage during a hoarding task. Our work suggests that medial entorhinal cortex and parasubiculum do not remap after embedding the home, but local changes in grid cell activity overrepresent the embedded space location and might contribute to navigation in complex environments. NEW & NOTEWORTHY Neural findings in the field of spatial navigation come mostly from an abstract approach that separates the animal from even a minimally biological context. In this article we embed the home cage of the rat in the environment to address some of the complexities of natural navigation. We find no explicit home cage representation. While both head direction cells and grid cells remain globally stable, we find that embedded spaces locally distort grid cells.


2018 ◽  
Author(s):  
Ehud Vinepinsky ◽  
Lear Cohen ◽  
Shay Perchik ◽  
Ohad Ben-Shahar ◽  
Opher Donchin ◽  
...  

AbstractLike most animals, the survival of fish depends crucially on navigation in space. This capacity has been documented in numerous behavioral studies that have revealed navigation strategies and the sensory modalities used for navigation. However, virtually nothing is known about how freely swimming fish represent space and locomotion in the brain to enable successful navigation. Using a novel wireless neural recording system, we measured the activity of single neurons in the goldfish lateral pallium, a brain region known to be involved in spatial memory and navigation, while the fish swam freely in a two-dimensional water tank. Four cell types were identified: border cells, head direction cells, speed cells and conjunction head direction with speed. Border cells were active when the fish was near the boundary of the environment. Head direction cells were shown to encode head direction. Speed cells only encoded the absolute speed independent of direction suggestive of an odometry signal. Finally, the conjunction of head direction with speed cells represented the velocity of the fish. This study thus sheds light on how information related to navigation is represented in the brain of swimming fish, and addresses the fundamental question of the neural basis of navigation in this diverse group of vertebrates. The similarities between our observations in fish and earlier findings in mammals may indicate that the networks controlling navigation in vertebrate originate from an ancient circuit common across vertebrates.SummaryNavigation is a fundamental behavioral capacity facilitating survival in many animal species. Fish is one lineage where navigation has been explored behaviorally, but it remains unclear how freely swimming fish represent space and locomotion in the brain. This is a key open question in our understanding of navigation in fish and more generally in understanding the evolutionary origin of the brain’s navigation system. To address this issue, we recorded neuronal signals from the brain of freely swimming goldfish and successfully identified representations of border and swimming kinematics in a brain region known to be associated with navigation. Our findings thus provide a glimpse into the building blocks of the neural representation underlying fish navigation. The similarity of the representation in fish with that of mammals may be key evidence supporting a preserved ancient mechanism across brain evolution.


2013 ◽  
Vol 24 (6) ◽  
pp. 1630-1644 ◽  
Author(s):  
Kishan Gupta ◽  
Nathan J. Beer ◽  
Lauren A. Keller ◽  
Michael E. Hasselmo

2017 ◽  
Author(s):  
Gilad Tocker ◽  
Eli Borodach ◽  
Tale L. Bjerknes ◽  
May-Britt Moser ◽  
Edvard I. Moser ◽  
...  

SummaryThe sense of direction is a vital computation, whose neural basis is considered to be carried out by head-direction cells. One way to estimate head-direction is by integrating head angular-velocity over time. However, this process results in error accumulation resembling a random walk, proportional to , which constitutes a mark for a path integration process. In the present study we analyzed previously recorded data to quantify the drift in head-direction cells of rat pups before and after eye-opening. We found that in rat pups before eye-opening the drift propagated as a random walk, while in rats after eye-opening the drift was lower. This suggests that a path-integration process underlies the estimation of head-direction, such that before eye-opening the head-direction system runs in an open-loop manner and accumulates error. After eye-opening, visual-input, such as arena shape, helps to correct errors and thus compute the sense of direction accurately.


Sign in / Sign up

Export Citation Format

Share Document