scholarly journals Pre-saccadic remapping relies on dynamics of spatial attention

2018 ◽  
Author(s):  
Martin Szinte ◽  
Donatas Jonikaitis ◽  
Dragan Rangelov ◽  
Heiner Deubel

SummaryEach eye movement shifts the projections of the visual scene on the retina. It has been proposed that the receptive fields of neurons in oculomotor areas are remapped pre-saccadically to account for these shifts. While remapping of the whole visual scene seems prohibitively complex, selection by visual attention may limit these processes to a subset of attended locations. Because attentional selection consumes time, remapping of attended locations should evolve in time, too. In our study, we cued a spatial location by presenting an attention capturing cue at different times before a saccade and constructed detailed maps of attentional allocation across the visual field. We observed no remapping when the cue appeared shortly before saccade. In contrast, when the cue appeared sufficiently early before saccade, attentional resources were reallocated to the remapped location. Our results suggest that pre-saccadic remapping is an attentional process relying on the spatial and temporal dynamics of visual attention.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Martin Szinte ◽  
Donatas Jonikaitis ◽  
Dragan Rangelov ◽  
Heiner Deubel

Each saccade shifts the projections of the visual scene on the retina. It has been proposed that the receptive fields of neurons in oculomotor areas are predictively remapped to account for these shifts. While remapping of the whole visual scene seems prohibitively complex, selection by attention may limit these processes to a subset of attended locations. Because attentional selection consumes time, remapping of attended locations should evolve in time, too. In our study, we cued a spatial location by presenting an attention-capturing cue at different times before a saccade and constructed maps of attentional allocation across the visual field. We observed no remapping of attention when the cue appeared shortly before saccade. In contrast, when the cue appeared sufficiently early before saccade, attentional resources were reallocated precisely to the remapped location. Our results show that pre-saccadic remapping takes time to develop suggesting that it relies on the spatial and temporal dynamics of spatial attention.


2017 ◽  
Author(s):  
Michael Puntiroli ◽  
Heiner Deubel ◽  
Martin Szinte

SummaryWhen preparing a saccade, attentional resources are focused at the saccade target and its immediate vicinity. Here we show that this does not hold true when saccades are prepared towards a recently extinguished target. We obtained detailed maps of orientation sensitivity when participants prepared a saccade toward a target that either remained on the screen or disappeared before the eyes moved. We found that attention was mainly focused at the immediate surround of the visible target and increasingly spread to more peripheral locations as a function of the delay between the target’s disappearance and the saccade. Interestingly, this spread was accompanied by an overall increase in sensitivity, speaking against a dilution of limited resources over a larger spatial area. We hypothesize that these results reflect the behavioral consequences of the spatio-temporal dynamics of visual receptive fields in the presence and in the absence a structured visual cue.


2011 ◽  
Author(s):  
M. Leonard ◽  
N. Ferjan Ramirez ◽  
C. Torres ◽  
M. Hatrak ◽  
R. Mayberry ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


2007 ◽  
Author(s):  
Jacek M. Zurada ◽  
Andy G. Lozowski ◽  
Mykola Lysetskiy

Sign in / Sign up

Export Citation Format

Share Document