Spatial and Temporal Dynamics of Phytoplankton Primary Production in the Teterev River

2008 ◽  
Vol 44 (1) ◽  
pp. 3-15
Author(s):  
V. I. Shcherbak ◽  
Yu. S. Kuzminchuk
2011 ◽  
Author(s):  
M. Leonard ◽  
N. Ferjan Ramirez ◽  
C. Torres ◽  
M. Hatrak ◽  
R. Mayberry ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


Author(s):  
Akira Umehara ◽  
Akira Umehara ◽  
Satoshi Asaoka ◽  
Satoshi Asaoka ◽  
Naoki Fujii ◽  
...  

In enclosed water areas, organic matters are actively produced by phytoplankton due to abundant nutrient supply from the rivers. In our study area of the semi-enclosed Hiroshima Bay, oyster farming consuming high primary production has been developed since the 1950s, and the oyster production of Hiroshima prefecture have had the largest market share (ca. 60%) in Japan. In this study, species composition of phytoplankton, primary production, and secondary production of net zooplanktons and oysters were determined seasonally at seven stations in the bay between November 2014 and August 2015. In the bay, diatoms including Skeletonema costatum dominated during the period of the study. The primary productions markedly increased during summer (August), and its mean values in the northern part of the bay (NB) and the southern part (SB) were 530 and 313 mgC/m2/d, respectively. The productions of net zooplankton and oyster increased during the warm season, and its mean values in the NB were 14 and 1.2 mgC/m2/d, and in SB were 28 and 0.9 mgC/m2/d, respectively. The energy transfer efficiencies from the primary producers to the secondary producers in the NB and SB were 2.8% and 9.1%, respectively. However, the transfer efficiency to the oysters was approximately 0.3% in the bay. This study clearly showed the spatial difference of the productions and transfer efficiencies, and the low contribution of the production of oysters in secondary productions in Hiroshima Bay.


2018 ◽  
Vol 44 (3) ◽  
pp. 240-247 ◽  
Author(s):  
V. N. Egorov ◽  
V. N. Popovichev ◽  
S. B. Gulin ◽  
N. I. Bobko ◽  
N. Yu. Rodionova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document