scholarly journals Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction

2018 ◽  
Author(s):  
Susann Vorberg ◽  
Stefan Seemayer ◽  
Johannes Söding

Compensatory mutations between protein residues that are in physical contact with each other can manifest themselves as statistical couplings between the corresponding columns in a multiple sequence alignment (MSA) of the protein family. Conversely, high coupling coefficients predict residues contacts. Methods for de-novo protein structure prediction based on this approach are becoming increasingly reliable. Their main limitation is the strong systematic and statistical noise in the estimation of coupling coefficients, which has so far limited their application to very large protein families. While most research has focused on boosting contact prediction quality by adding external information, little progress has been made to improve the statistical procedure at the core. In that regard, our lack of understanding of the sources of noise poses a major obstacle. We have developed CCMgen, the first method for simulating protein evolution by providing full control over the generation of realistic synthetic MSAs with pairwise statistical couplings between residue positions. This procedure requires an exact statistical model that reliably reproduces observed alignment statistics. With CCMpredPy we also provide an implementation of persistent contrastive divergence (PCD), a precise inference technique that enables us to learn the required high-quality statistical models. We demonstrate how CCMgen can facilitate the development and testing of contact prediction methods by analysing the systematic noise contributions from phylogeny and entropy. For that purpose we propose a simple entropy correction (EC) strategy which disentangles the correction for both sources of noise. We find that entropy contributes typically roughly twice as much noise as phylogeny.


2020 ◽  
Author(s):  
Aashish Jain ◽  
Genki Terashi ◽  
Yuki Kagaya ◽  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Charles Christoffer ◽  
...  

ABSTRACTProtein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. The model is trained in a multi-task fashion to also predict backbone and orientation angles further improving the inter-residue distance prediction. We show that AttentiveDist outperforms the top methods for contact prediction in the CASP13 structure prediction competition. To aid in structure modeling we also developed two new deep learning-based sidechain center distance and peptide-bond nitrogen-oxygen distance prediction models. Together these led to a 12% increase in TM-score from the best server method in CASP13 for structure prediction.



2018 ◽  
Author(s):  
Hiroyuki Fukuda ◽  
Kentaro Tomii

AbstractProtein contact prediction is a crucially important step for protein structure prediction. To predict a contact, approaches of two types are used: evolutionary coupling analysis (ECA) and supervised learning. ECA uses a large multiple sequence alignment (MSA) of homologue sequences and extract correlation information between residues. Supervised learning uses ECA analysis results as input features and can produce higher accuracy. As described herein, we present a new approach to contact prediction which can both extract correlation information and predict contacts in a supervised manner directly from MSA using a deep neural network (DNN). Using DNN, we can obtain higher accuracy than with earlier ECA methods. Simultaneously, we can weight each sequence in MSA to eliminate noise sequences automatically in a supervised way. It is expected that the combination of our method and other meta-learning methods can provide much higher accuracy of contact prediction.



2015 ◽  
Vol 32 (6) ◽  
pp. 814-820 ◽  
Author(s):  
Gearóid Fox ◽  
Fabian Sievers ◽  
Desmond G. Higgins

Abstract Motivation: Multiple sequence alignments (MSAs) with large numbers of sequences are now commonplace. However, current multiple alignment benchmarks are ill-suited for testing these types of alignments, as test cases either contain a very small number of sequences or are based purely on simulation rather than empirical data. Results: We take advantage of recent developments in protein structure prediction methods to create a benchmark (ContTest) for protein MSAs containing many thousands of sequences in each test case and which is based on empirical biological data. We rank popular MSA methods using this benchmark and verify a recent result showing that chained guide trees increase the accuracy of progressive alignment packages on datasets with thousands of proteins. Availability and implementation: Benchmark data and scripts are available for download at http://www.bioinf.ucd.ie/download/ContTest.tar.gz. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.



2019 ◽  
Author(s):  
Jinbo Xu ◽  
Sheng Wang

AbstractThis paper reports the CASP13 results of distance-based contact prediction, threading and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median MSA (multiple sequence alignment) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2 and L long-range contact precision of 70%, 58% and 45%, respectively, and predicted correct folds (TMscore>0.5) for 18 of 32 targets. Although on average underperforming AlphaFold in 3D modeling, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1 and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (1) predicted distance is more useful than contacts for both template-based and free modeling; and (2) structure modeling may be improved by integrating alignment and co-evolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.



2019 ◽  
Author(s):  
Mark Chonofsky ◽  
Saulo H. P. de Oliveira ◽  
Konrad Krawczyk ◽  
Charlotte M. Deane

AbstractOver the last few years, the field of protein structure prediction has been transformed by increasingly-accurate contact prediction software. These methods are based on the detection of coevolutionary relationships between residues from multiple sequence alignments. However, despite speculation, there is little evidence of a link between contact prediction and the physico-chemical interactions which drive amino-acid coevolution. Furthermore, existing protocols predict only a fraction of all protein contacts and it is not clear why some contacts are favoured over others.Using a dataset of 863 protein domains, we assessed the physico-chemical interactions of contacts predicted by CCMpred, MetaPSICOV, and DNCON2, as examples of direct coupling analysis, meta-prediction, and deep learning, respectively. To further investigate what sets these predicted contacts apart, we considered correctly-predicted contacts and compared their properties against the protein contacts that were not predicted.We found that predicted contacts tend to form more bonds than non-predicted contacts, which suggests these contacts may be more important. Comparing the contacts predicted by each method, we found that metaPSICOV and DNCON2 favour accuracy whereas CCMPred detects contacts with more bonds. This suggests that the push for higher accuracy may lead to a loss of physico-chemically important contacts.These results underscore the connection between protein physico-chemistry and the coevolutionary couplings that can be derived from multiple sequence alignments. This relationship is likely to be relevant to protein structure prediction and functional analysis of protein structure and may be key to understanding their utility for different problems in structural biology.Author summaryAccurate contact prediction has allowed scientists to predict protein structures with unprecedented levels of accuracy. The success of contact prediction methods, which are based on inferring correlations between amino acids in protein multiple sequence alignments, has prompted a great deal of work to improve the quality of contact prediction, leading to the development of several different methods for detecting amino acids in proximity.In this paper, we investigate the properties of these contact prediction methods. We find that contacts which are predicted differ from the other contacts in the protein, in particular they have more physico-chemical bonds, and the predicted contacts are more strongly conserved than other contacts across protein families. We also compared the properties of different contact prediction methods and found that the characteristics of the predicted sets depend on the prediction method used.Our results point to a link between physico-chemical bonding interactions and the evolutionary history of proteins, a connection which is reflected in their amino acid sequences.



2021 ◽  
Author(s):  
Gabriele Pozzati ◽  
Wensi Zhu ◽  
John Lamb ◽  
Claudio Bassot ◽  
Petras Kundrotas ◽  
...  

In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilizing deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSA). In CASP14, the best method could predict the structure of most proteins with impressive accuracy. The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most of the earlier studies have not used the latest DL methods for inter-chain contact distance predictions. In this paper, we showed for the first time that using one of the best DL-based residue-residue contact prediction methods (trRosetta), it is possible to simultaneously predict both the tertiary and quaternary structures of some protein pairs, even when the structures of the monomers are not known. Straightforward application of this method to a standard dataset for protein-protein docking yielded limited success, however, using alternative methods for MSA generating allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins and thus this function can be used to evaluate the quality of the resulting docking models. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods, however, no a priori structural information for the individual proteins is needed. Moreover, the results of traditional and fold-and-dock approaches are complementary and thus a combined docking pipeline should increase overall docking success significantly. The dock-and-fold pipeline helped us to generate the best model for one of the CASP14 oligomeric targets, H1065.



Author(s):  
Mark Chonofsky ◽  
Saulo H P de Oliveira ◽  
Konrad Krawczyk ◽  
Charlotte M Deane

Abstract Motivation Over the last few years, the field of protein structure prediction has been transformed by increasingly-accurate contact prediction software. These methods are based on the detection of coevolutionary relationships between residues from multiple sequence alignments. However, despite speculation, there is little evidence of a link between contact prediction and the physico-chemical interactions which drive amino-acid coevolution. Furthermore, existing protocols predict only a fraction of all protein contacts and it is not clear why some contacts are favoured over others. Using a dataset of 863 protein domains, we assessed the physico-chemical interactions of contacts predicted by CCMpred, MetaPSICOV, and DNCON2, as examples of direct coupling analysis, meta-prediction, and deep learning. Results We considered correctly-predicted contacts and compared their properties against the protein contacts that were not predicted. Predicted contacts tend to form more bonds than non-predicted contacts, which suggests these contacts may be more important than contacts that were not predicted. Comparing the contacts predicted by each method, we found that metaPSICOV and DNCON2 favour accuracy whereas CCMPred detects contacts with more bonds. This suggests that the push for higher accuracy may lead to a loss of physico-chemically important contacts. These results underscore the connection between protein physico-chemistry and the coevolutionary couplings that can be derived from multiple sequence alignments. This relationship is likely to be relevant to protein structure prediction and functional analysis of protein structure and may be key to understanding their utility for different problems in structural biology. Availability We use publicly-available databases. Our code is available for download at http://opig.stats.ox.ac.uk/. Supplementary information Supplementary information is available at Bioinformatics online.



2021 ◽  
Author(s):  
Diego del Alamo ◽  
Davide Sala ◽  
Hassane Mchaourab ◽  
Jens Meiler

Equilibrium fluctuations and triggered conformational changes often underlie the functional cycles of membrane proteins. For example, transporters mediate the passage of molecules across cell membranes by alternating between inward-facing (IF) and outward-facing (OF) states, while receptors undergo intracellular structural rearrangements that initiate signaling cascades. Although the conformational plasticity of these proteins has historically posed a challenge for traditional de novo protein structure prediction pipelines, the recent success of AlphaFold2 (AF2) in CASP14 culminated in the modeling of a transporter in multiple conformations to high accuracy. Given that AF2 was designed to predict static structures of proteins, it remains unclear if this result represents an underexplored capability to accurately predict multiple conformations and/or structural heterogeneity. Here, we present an approach to drive AF2 to sample alternative conformations of topologically diverse transporters and G-protein coupled receptors (GPCRs) that are absent from the AF2 training set. Whereas models generated using the default AF2 pipeline are conformationally homogeneous and nearly identical to one another, reducing the depth of the input multiple sequence alignments (MSAs) led to the generation of accurate models in multiple conformations. In our benchmark, these conformations were observed to span the range between two experimental structures of interest, suggesting that our protocol allows sampling of the conformational landscape at the energy minimum. Nevertheless, our results also highlight the need for the next generation of deep learning algorithms to be designed to predict ensembles of biophysically relevant states.



2021 ◽  
Author(s):  
Samantha Petti ◽  
Nicholas Bhattacharya ◽  
Roshan Rao ◽  
Justas Dauparas ◽  
Neil Thomas ◽  
...  

Multiple Sequence Alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for. Here, we implement a smooth and differentiable version of the Smith-Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF mildly improves contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing the predicted confidence metric, we can learn MSAs that improve structure predictions over the initial MSAs. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment.



2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroyuki Fukuda ◽  
Kentaro Tomii

Abstract Background Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein sequences are accumulating to an increasing degree such that abundant sequences to construct an MSA of a target protein are readily obtainable. Nevertheless, many cases present different ends of the number of sequences that can be included in an MSA used for contact prediction. The abundant sequences might degrade prediction results, but opportunities remain for a limited number of sequences to construct an MSA. To resolve these persistent issues, we strove to develop a novel framework using DNNs in an end-to-end manner for contact prediction. Results We developed neural network models to improve precision of both deep and shallow MSAs. Results show that higher prediction accuracy was achieved by assigning weights to sequences in a deep MSA. Moreover, for shallow MSAs, adding a few sequential features was useful to increase the prediction accuracy of long-range contacts in our model. Based on these models, we expanded our model to a multi-task model to achieve higher accuracy by incorporating predictions of secondary structures and solvent-accessible surface areas. Moreover, we demonstrated that ensemble averaging of our models can raise accuracy. Using past CASP target protein domains, we tested our models and demonstrated that our final model is superior to or equivalent to existing meta-predictors. Conclusions The end-to-end learning framework we built can use information derived from either deep or shallow MSAs for contact prediction. Recently, an increasing number of protein sequences have become accessible, including metagenomic sequences, which might degrade contact prediction results. Under such circumstances, our model can provide a means to reduce noise automatically. According to results of tertiary structure prediction based on contacts and secondary structures predicted by our model, more accurate three-dimensional models of a target protein are obtainable than those from existing ECA methods, starting from its MSA. DeepECA is available from https://github.com/tomiilab/DeepECA.



Sign in / Sign up

Export Citation Format

Share Document