scholarly journals Formation of periodic pigment spots by the reaction-diffusion mechanism

2018 ◽  
Author(s):  
Baoqing Ding ◽  
Erin L. Patterson ◽  
Srinidhi V. Holalu ◽  
Jingjian Li ◽  
Grace A. Johnson ◽  
...  

AbstractMany organisms exhibit visually striking spotted or striped pigmentation patterns. Turing’s reaction-diffusion model postulates that such periodic pigmentation patterns form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and repressors fully fitting this versatile model remain elusive. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers that correspond to Turing’s model and explain how periodic anthocyanin spots form. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple reaction-diffusion networks are likely essential contributors to the evolution of the remarkable diversity of periodic pigmentation patterns in flowers.

2020 ◽  
Vol 8 (48) ◽  
pp. 17417-17428
Author(s):  
Jiangtao Shi ◽  
Yue Zhao ◽  
Yue Wu ◽  
Jingyuan Chu ◽  
Xiao Tang ◽  
...  

In this work, pyrolysis behaviors dominated by the reaction–diffusion mechanism were investigated. And one-dimensional reaction–diffusion model is proposed.


2020 ◽  
Vol 19 ◽  
pp. 103462 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Imtiaz Ahmad ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu

Sign in / Sign up

Export Citation Format

Share Document