scholarly journals LRIT3 is required for nyctalopin expression and normal ON and OFF pathway signaling in the retina

2018 ◽  
Author(s):  
Nazarul Hasan ◽  
Gobinda Pangeni ◽  
Thomas A. Ray ◽  
Kathryn M. Fransen ◽  
Jennifer Noel ◽  
...  

ABSTRACTAt its first synapse, the retina establishes two parallel channels that encode light increments (ON) or decrements (OFF). At the same synapse, changes in photoreceptor glutamate release are sensed by ON bipolar cells (BCs) via the metabotropic glutamate receptor 6 (mGluR6), and OFF BCs via ionotropic BCs, which differ in their synaptic configuration with the photoreceptor terminal. ON BCs form invaginating synapses that bring them in close proximity to presynaptic ribbons and the presumed sole source of glutamate release. OFF bipolar cells form flat contacts distal to the ribbon synapse. We investigated the role of LRIT3 in normal assembly and function of the mGlur6 signaling cascade present in ON BCs. We demonstrate that LRIT3 is required for nyctalopin expression and thus TRPM1 expression and function. Using glutamate imaging, whole-cell electrophysiology, and multi-electrode array extracellular recordings we demonstrate that the loss of LRIT3 impacts both the ON and OFF pathways at the level of the BCs. The effect on ON pathway signaling, a lack of ON BC response, is shared by mutants lacking mGluR6, TRPM1 GPR179 or nyctalopin. The effects on the OFF pathway are unique to LRIT3, and include a decrease in response amplitude of both OFF BC and GCs. Based on these results, we propose a working model where LRIT3 is required for either efficient glutamate release or reuptake from the first retinal synapse.SIGNIFICANCE STATEMENTAt the first visual synapse, photoreceptor cells signal to two distinct bipolar cell (BC) populations, one characterized by a depolarizing response to light onset (ON or DBCs), the other by a hyperpolarizing response (OFF or HBCs). The DBC light response depends on a G protein-coupled receptor and associated protein complex, known as the signalplex. Mutations in signalplex proteins lead to DBC pathway-specific loss of visual function. Here we show how loss of LRIT3, a previously identified signalplex protein, prevents functional assembly of the DBC signalplex and alters visual function in both ON and OFF signaling pathways. Thus, our results indicate that the function of LRIT3 at this first synapse extends beyond assembly of the DBC signalplex.

2002 ◽  
Vol 19 (3) ◽  
pp. 275-281 ◽  
Author(s):  
MATTHEW H. HIGGS ◽  
PETER D. LUKASIEWICZ

We investigated the effects of group II metabotropic glutamate receptor (mGluR) activation on excitatory synaptic transmission in the salamander retinal slice preparation. The group II selective agonists DCG-IV and LY354740 reduced light-evoked excitatory postsynaptic currents (EPSCs) in ganglion cells. To determine the synaptic basis of this effect, we also recorded from bipolar cells and horizontal cells. In ON bipolar cells, DCG-IV increased the inward current in darkness but did not affect the peak current at light onset. In OFF bipolar cells and horizontal cells, DCG-IV had the opposite effect, reducing the inward current in darkness. Given the opposite polarities of these two classes of synapses, our results suggest that group II mGluRs act presynaptically to reduce glutamate release from photoreceptors. To determine whether DCG-IV affected rods or cones, we applied light stimuli that selectively activate each type of photoreceptor. In horizontal cells, most of which receive mixed synaptic input from rods and cones, DCG-IV reduced rod-driven EPSCs evoked by 470-nm stimuli and cone-driven EPSCs elicited by 700-nm stimuli in the presence of a rod-saturating background. Thus, activation of group II mGluRs reduced rod- and cone-mediated glutamate release. Our results suggest that group II mGluRs could mediate feedback by which extracellular glutamate inhibits glutamate release from photoreceptor terminals.


2005 ◽  
Vol 22 (4) ◽  
pp. 469-477 ◽  
Author(s):  
DAVID J. CALKINS

The separation of OFF pathways that signal light decrements from ON pathways that signal light increments occurs at the first retinal synapse. The dendrites of OFF bipolar cells abut the cone pedicle at basal positions distal to the site of glutamate release and express ligand-gated or ionotropic glutamate receptors (GluR). The dendrites of ON bipolar cells penetrate narrow invaginations of the cone pedicle proximal to the site of release and express the G-protein-coupled, metabotropic glutamate receptor, mGluR6. However, recent studies demonstrating the expression of GluR subunits in the rodent rod bipolar cell, known to yield an ON response to light, call this basic segregation of receptors into question. The light-microscopic distribution of many glutamate receptors in the primate retina is now well established. We reexamined their ultrastructural localization in the outer retina ofMacaca fascicularisto test systematically whether invaginating dendrites at the cone synapse, presumably from ON bipolar cells, also express one or more ionotropic subunits. Using preembedding immunocytochemistry for electron microscopy, we quantified the distribution of the AMPA-sensitive subunits GluR2/3 and GluR4 and of the kainate-sensitive subunits GluR6/7 across 207 labeled dendrites occupying specific morphological loci at the cone pedicle. We report, in agreement with published investigations, that the majority of labeled processes for GluR2/3 (70%) and GluR4 (67%) either occupy basal positions or arise from horizontal cells. For GluR6/7, we find a significantly lower fraction of labeled processes at these positions (47%). We also find a considerable number of labeled dendrites for GluR2/3 (10%), GluR4 (21%), and GluR6/7 (18%) at invaginating positions. Surprisingly, for each subunit, the remainder of labeled processes corresponds to “fingers” of presynaptic cytoplasm within the cone invagination.


2015 ◽  
Vol 114 (4) ◽  
pp. 2368-2375 ◽  
Author(s):  
James W. Fransen ◽  
Gobinda Pangeni ◽  
Ian S. Pyle ◽  
Maureen A. McCall

The morphological consequences of retinal photoreceptor degeneration are well documented. Much less is known about changes in visual function during degeneration and whether central visual structures directly reflect changes in retinal ganglion cell (RGC) function. To address this, we compared changes in visual function of RGCs and cells in the superior colliculus (SC) in transgenic (Tg) P23H-1 rats, a model of retinitis pigmentosa (RP), and wild-type (WT) rats at postnatal days 35–50 (P35–50) and P300. RGCs were classified on the basis of their responses to light: onset (ON), offset (OFF), or both (ON-OFF). The distribution of ON, OFF, and ON-OFF RGCs is similar between WT and P35 Tg P23H-1 rats. By P300, many Tg P23H-1 RGCs are nonresponsive (NR). At this age, there is a sharp decline in ON and ON-OFF RGCs, and the majority that remain are OFF RGCs. Spontaneous rhythmic activity was observed in many RGCs at P300, but only in OFF or NR RGCs. In the SC, WT and P50 Tg P23H-1 responses are similar. At P300, Tg P23H-1 ON SC responses declined but OFF responses increased. We examined postsynaptic glutamate receptor expression located on the bipolar cells (BC), where the ON and OFF pathways arise. At P150, metabotropic glutamate receptor 6 (mGluR6) expression is lower than in WT, consistent with a decrease in ON RGC responses. GluR4 expression, an ionotropic glutamate receptor associated with OFF BCs, appears similar to that in WT. The loss of ON responses in Tg P23H-1 RGCs and in the SC is conserved and related to reduced mGluR6 signaling.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 234 ◽  
Author(s):  
Kouji Fukuyama ◽  
Ryo Kato ◽  
Masahiko Murata ◽  
Takashi Shiroyama ◽  
Motohiro Okada

Pharmacological mechanisms of gold-standard antipsychotics against treatment-refractory schizophrenia, such as clozapine (CLZ), remain unclear. We aimed to explore the mechanisms of CLZ by investigating the effects of MK801 and CLZ on tripartite synaptic transmission in the thalamocortical glutamatergic pathway using multi-probe microdialysis and primary cultured astrocytes. l-glutamate release in the medial prefrontal cortex (mPFC) was unaffected by local MK801 administration into mPFC but was enhanced in the mediodorsal thalamic nucleus (MDTN) and reticular thalamic nucleus (RTN) via GABAergic disinhibition in the RTN–MDTN pathway. The local administration of therapeutically relevant concentrations of CLZ into mPFC and MDTN increased and did not affect mPFC l-glutamate release. The local administration of the therapeutically relevant concentration of CLZ into mPFC reduced MK801-induced mPFC l-glutamate release via presynaptic group III metabotropic glutamate receptor (III-mGluR) activation. However, toxic concentrations of CLZ activated l-glutamate release associated with hemichannels. This study demonstrated that RTN is a candidate generator region in which impaired N-methyl-d-aspartate (NMDA)/glutamate receptors likely produce thalamocortical hyperglutamatergic transmission. Additionally, we identified several mechanisms of CLZ relating to its superiority in treatment-resistant schizophrenia and its severe adverse effects: (1) the prevention of thalamocortical hyperglutamatergic transmission via activation of mPFC presynaptic III-mGluR and (2) activation of astroglial l-glutamate release associated with hemichannels. These actions may contribute to the unique clinical profile of CLZ.


Sign in / Sign up

Export Citation Format

Share Document