scholarly journals A dynamic network model can explain temporal receptive fields in primary auditory cortex

2018 ◽  
Author(s):  
Monzilur Rahman ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

ABSTRACTAuditory neurons encode stimulus history, which is often modelled using a span of time-delays in a spectro-temporal receptive field (STRF). We propose an alternative model for the encoding of stimulus history, which we apply to extracellular recordings of neurons in the primary auditory cortex of anaesthetized ferrets. For a linear-non-linear STRF model (LN model) to achieve a high level of performance in predicting single unit neural responses to natural sounds in the primary auditory cortex, we found that it is necessary to include time delays going back at least 200 ms in the past. This is an unrealistic time span for biological delay lines. We therefore asked how much of this dependence on stimulus history can instead be explained by dynamical aspects of neurons. We constructed a neural-network model whose output is the weighted sum of units whose responses are determined by a dynamic firing-rate equation. The dynamic aspect performs low-pass filtering on each unit’s response, providing an exponentially decaying memory whose time constant is individual to each unit. We find that this dynamic network (DNet) model, when fitted to the neural data using STRFs of only 25 ms duration, can achieve prediction performance on a held-out dataset comparable to the best performing LN model with STRFs of 200 ms duration. These findings suggest that integration due to the membrane time constants or other exponentially-decaying memory processes may underlie linear temporal receptive fields of neurons beyond 25 ms.AUTHOR SUMMARYThe responses of neurons in the primary auditory cortex depend on the recent history of sounds over seconds or less. Typically, this dependence on the past has been modelled by applying a wide span of time delays to the input, although this is likely to be biologically unrealistic. Real neurons integrate the history of their activity due to the dynamical properties of their cell membranes and other components. We show that a network with a realistically narrow span of delays and with units having dynamic characteristics like those found in neurons, succinctly models neural responses recorded from ferret primary auditory cortex. Because these integrative properties are widespread, our dynamic network provides a basis for modelling responses in other neural systems.

2019 ◽  
Vol 15 (5) ◽  
pp. e1006618 ◽  
Author(s):  
Monzilur Rahman ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

2007 ◽  
Vol 98 (4) ◽  
pp. 2182-2195 ◽  
Author(s):  
Craig A. Atencio ◽  
David T. Blake ◽  
Fabrizio Strata ◽  
Steven W. Cheung ◽  
Michael M. Merzenich ◽  
...  

Many communication sounds, such as New World monkey twitter calls, contain frequency-modulated (FM) sweeps. To determine how this prominent vocalization element is represented in the auditory cortex we examined neural responses to logarithmic FM sweep stimuli in the primary auditory cortex (AI) of two awake owl monkeys. Using an implanted array of microelectrodes we quantitatively characterized neuronal responses to FM sweeps and to random tone-pip stimuli. Tone-pip responses were used to construct spectrotemporal receptive fields (STRFs). Classification of FM sweep responses revealed few neurons with high direction and speed selectivity. Most neurons responded to sweeps in both directions and over a broad range of sweep speeds. Characteristic frequency estimates from FM responses were highly correlated with estimates from STRFs, although spectral receptive field bandwidth was consistently underestimated by FM stimuli. Predictions of FM direction selectivity and best speed from STRFs were significantly correlated with observed FM responses, although some systematic discrepancies existed. Last, the population distributions of FM responses in the awake owl monkey were similar to, although of longer temporal duration than, those in the anesthetized squirrel monkeys.


2013 ◽  
Vol 25 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Jihoon Oh ◽  
Jae Hyung Kwon ◽  
Po Song Yang ◽  
Jaeseung Jeong

Neural responses in early sensory areas are influenced by top–down processing. In the visual system, early visual areas have been shown to actively participate in top–down processing based on their topographical properties. Although it has been suggested that the auditory cortex is involved in top–down control, functional evidence of topographic modulation is still lacking. Here, we show that mental auditory imagery for familiar melodies induces significant activation in the frequency-responsive areas of the primary auditory cortex (PAC). This activation is related to the characteristics of the imagery: when subjects were asked to imagine high-frequency melodies, we observed increased activation in the high- versus low-frequency response area; when the subjects were asked to imagine low-frequency melodies, the opposite was observed. Furthermore, we found that A1 is more closely related to the observed frequency-related modulation than R in tonotopic subfields of the PAC. Our findings suggest that top–down processing in the auditory cortex relies on a mechanism similar to that used in the perception of external auditory stimuli, which is comparable to early visual systems.


2000 ◽  
Vol 84 (3) ◽  
pp. 1453-1463 ◽  
Author(s):  
Jos J. Eggermont

Responses of single- and multi-units in primary auditory cortex were recorded for gap-in-noise stimuli for different durations of the leading noise burst. Both firing rate and inter-spike interval representations were evaluated. The minimum detectable gap decreased in exponential fashion with the duration of the leading burst to reach an asymptote for durations of 100 ms. Despite the fact that leading and trailing noise bursts had the same frequency content, the dependence on leading burst duration was correlated with psychophysical estimates of across frequency channel (different frequency content of leading and trailing burst) gap thresholds in humans. The duration of the leading burst plus that of the gap was represented in the all-order inter-spike interval histograms for cortical neurons. The recovery functions for cortical neurons could be modeled on basis of fast synaptic depression and after-hyperpolarization produced by the onset response to the leading noise burst. This suggests that the minimum gap representation in the firing pattern of neurons in primary auditory cortex, and minimum gap detection in behavioral tasks is largely determined by properties intrinsic to those, or potentially subcortical, cells.


2014 ◽  
Vol 989-994 ◽  
pp. 2639-2642
Author(s):  
Nan Qi Yuan ◽  
Tian Jiang ◽  
Shi Bai ◽  
Hao Sun ◽  
Jing Mei Zhao

In order to research dynamic network astringency reaching uniformity, this paper perfects the Vicsek model and puts forward improving dynamic network astringency efficiency by weighted model. We prove that the convergence rate of weighted model is faster than the classic Vicsek model and it can optimize dynamic network.


2021 ◽  
Vol 235 ◽  
pp. 03035
Author(s):  
jiaojiao Lv ◽  
yingsi Zhao

Recommendation system is unable to achive the optimal algorithm, recommendation system precision problem into bottleneck. Based on the perspective of product marketing, paper takes the inherent attribute as the classification standard and focuses on the core problem of “matching of product classification and recommendation algorithm of users’ purchase demand”. Three hypotheses are proposed: (1) inherent attributes of the product directly affect user demand; (2) classified product is suitable for different recommendation algorithms; (3) recommendation algorithm integration can achieve personalized customization. Based on empirical research on the relationship between characteristics of recommendation information (independent variable) and purchase intention (dependent variable), it is concluded that predictability and difference of recommendation information are not fully perceived and stimulation is insufficient. Therefore, SIS dynamic network model based on the distribution model of SIS virus is constructed. It discusses the spreading path of recommendation information and “infection” situation of consumers to enhance accurate matching of recommendation system.


2005 ◽  
Vol 94 (4) ◽  
pp. 2970-2975 ◽  
Author(s):  
Rajiv Narayan ◽  
Ayla Ergün ◽  
Kamal Sen

Although auditory cortex is thought to play an important role in processing complex natural sounds such as speech and animal vocalizations, the specific functional roles of cortical receptive fields (RFs) remain unclear. Here, we study the relationship between a behaviorally important function: the discrimination of natural sounds and the structure of cortical RFs. We examine this problem in the model system of songbirds, using a computational approach. First, we constructed model neurons based on the spectral temporal RF (STRF), a widely used description of auditory cortical RFs. We focused on delayed inhibitory STRFs, a class of STRFs experimentally observed in primary auditory cortex (ACx) and its analog in songbirds (field L), which consist of an excitatory subregion and a delayed inhibitory subregion cotuned to a characteristic frequency. We quantified the discrimination of birdsongs by model neurons, examining both the dynamics and temporal resolution of discrimination, using a recently proposed spike distance metric (SDM). We found that single model neurons with delayed inhibitory STRFs can discriminate accurately between songs. Discrimination improves dramatically when the temporal structure of the neural response at fine timescales is considered. When we compared discrimination by model neurons with and without the inhibitory subregion, we found that the presence of the inhibitory subregion can improve discrimination. Finally, we modeled a cortical microcircuit with delayed synaptic inhibition, a candidate mechanism underlying delayed inhibitory STRFs, and showed that blocking inhibition in this model circuit degrades discrimination.


Sign in / Sign up

Export Citation Format

Share Document