scholarly journals Circuit directionality for motivation: lateral accumbens-pallidum, but not pallidum-accumbens, connections regulate motivational attraction to reward cues

2018 ◽  
Author(s):  
Elizabeth B. Smedley ◽  
Alyssa DiLeo ◽  
Kyle S. Smith

AbstractSign-tracking behavior, in which animals interact with a cue that predicts reward, provides an example of how incentive salience can be attributed to cues and elicit motivation. The nucleus accumbens (NAc) and ventral pallidum (VP) are two regions involved in cue-driven motivation. The VP, and subregions of the NAc including the medial shell and core, are critical for sign-tracking, and connections between the medial shell and VP are known to participate in sign-tracking and other motivated behaviors. The NAc lateral shell (NAcLSh) is a distinct and understudied subdivision of the NAc, and its contribution to the process by which reward cues acquire value remains unclear. The NAcLSh has been implicated in reward-directed behavior, and has reciprocal connections with the VP, suggesting that NAcLSh and VP interactions could be important mechanisms for incentive salience. Here, we use DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) and an intersectional viral delivery strategy to produce a biased inhibition of NAcLSh neurons projecting to the VP, and vice versa. We find that disruption of connections from NAcLSh to VP reduces sign-tracking behavior while not affecting consumption of food rewards. In contrast, VP to NAcLSh disruption affected neither sign-tracking nor reward consumption, but did produce a greater shift in animals’ behavior more towards the reward source when it was available. These findings indicate that the NAcLSh→VP pathway plays an important role in guiding animals towards reward cues, while VP→NAcLSh back-projections may not and may instead bias motivated behavior towards rewards.

2020 ◽  
Author(s):  
Carina Soares-Cunha ◽  
Raquel Correia ◽  
Ana Verónica Domingues ◽  
Bárbara Coimbra ◽  
Nivaldo AP de Vasconcelos ◽  
...  

AbstractThe nucleus accumbens (NAc) is a key region in motivated behaviors. NAc medium spiny neurons (MSNs) are divided into those expressing dopamine receptor D1 or D2. Classically, D1- and D2-MSNs have been described as having opposing roles in reinforcement but recent evidence suggests a more complex role for D2-MSNs.Here we show that optogenetic modulation of D2-MSN to ventral pallidum (VP) projections during different stages of motivated behavior has contrasting effects in motivation. Activation of D2-MSN-VP projections during a reward-predicting cue results in increased motivational drive, whereas activation at reward delivery results in decreased motivation; optical inhibition has the opposite behavioral effect. In addition, in a free choice instrumental task, animals prefer the lever that originates one pellet in opposition to pellet plus D2-MSN-VP optogenetic activation, and vice versa for optogenetic inhibition.In summary, D2-MSN-VP projections play different (and even opposing) roles in distinct phases of motivated behavior.


2017 ◽  
Author(s):  
Kurt M. Fraser ◽  
Patricia H. Janak

AbstractThe attribution of incentive salience to reward-paired cues is dependent on dopamine release in the nucleus accumbens core. These dopamine signals conform to traditional reward-prediction error signals and have been shown to diminish with time. Here we examined if the diminishing dopamine signal in the nucleus accumbens core has functional implications for the expression of sign-tracking, a Pavlovian conditioned response indicative of the attribution of incentive salience to reward-paired cues. Food-restricted male Sprague-Dawley rats were trained in a Pavlovian paradigm in which an insertable lever predicted delivery of food reward in a nearby food cup. After 7 or 14 training sessions, rats received infusions of saline, the dopamine antagonist flupenthixol (100 mM), or the GABA agonists baclofen and muscimol (0.5 mM baclofen/0.05 mM muscimol) into the nucleus accumbens core or the dorsal lateral striatum. Dopamine antagonism within the nucleus accumbens core attenuated sign-tracking, whereas reversible inactivation did not affect sign-tracking but increased non-specific food cup checking behaviors. Neither drug in the dorsal lateral striatum affected sign-tracking behavior. Critically, extended training did not alter these effects. Though extended experience with an incentive stimulus may reduce cue-evoked dopamine in the nucleus accumbens core, this does not alter the function of dopamine in this region to promote Pavlovian cue approach nor result in the recruitment of dorsal lateral striatal systems for this behavior. These data support the notion that dopamine within the mesoaccumbal system, but not the nigrostriatal system, contributes critically to incentive motivational processes independent of the length of training.AbbreviationsDLSdorsal lateral striatumGTgoal-trackerINintermediate responderNAcCnucleus accumbens coreSTsign-tracker


Author(s):  
Katherine N. Wright ◽  
Daniel W Wesson

The ventral striatum regulates motivated behaviors which are essential for survival. The ventral striatum contains both the nucleus accumbens (NAc), which is well established to contribute to motivated behavior, and the adjacent tubular striatum (TuS), which is poorly understood in this context. We reasoned that these ventral striatal subregions may be uniquely specialized in their neural representation of goal-directed behavior. To test this, we simultaneously examined TuS and NAc single-unit activity as male mice engaged in a sucrose self-administration task, which included extinction and cue-induced reinstatement sessions. While background levels of activity were comparable between regions, more TuS neurons were recruited upon reward-taking, and among recruited neurons, TuS neurons displayed greater changes in their firing during reward-taking and extinction than those in the NAc. Conversely, NAc neurons displayed greater changes in their firing during cue-reinstated reward-seeking. Interestingly, at least in the context of this behavioral paradigm, TuS neural activity predicted reward-seeking whereas NAc activity did not. Together, by directly comparing their dynamics in several behavioral contexts, this work reveals that the NAc and TuS ventral striatum subregions distinctly represent reward-taking and seeking.


2021 ◽  
Vol 15 ◽  
Author(s):  
Amanda G. Iglesias ◽  
Shelly B. Flagel

In this review, we highlight evidence that supports a role for the paraventricular nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical and neurochemical overview, outlining what is known of the cellular makeup of the region and its most prominent afferent and efferent connections. We discuss how these connections and distinctions across the anterior-posterior axis correspond to the perceived function of the PVT. We then focus on the hypothalamic-thalamic-striatal circuit and the neuroanatomical and functional placement of the PVT within this circuit. In this regard, the PVT is ideally positioned to integrate information regarding internal states and the external environment and translate it into motivated actions. Based on data that has emerged in recent years, including that from our laboratory, we posit that orexinergic (OX) innervation from the lateral hypothalamus (LH) to the PVT encodes the incentive motivational value of reward cues and thereby alters the signaling of the glutamatergic neurons projecting from the PVT to the shell of the nucleus accumbens (NAcSh). The PVT-NAcSh pathway then modulates dopamine activity and resultant cue-motivated behaviors. As we and others apply novel tools and approaches to studying the PVT we will continue to refine the anatomical, cellular, and functional definitions currently ascribed to this nucleus and further elucidate its role in motivated behaviors.


Author(s):  
Kristen N. Hirter ◽  
Elaine N. Miller ◽  
Cheryl D. Stimpson ◽  
Kimberley A. Phillips ◽  
William D. Hopkins ◽  
...  

2011 ◽  
Vol 217 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Edit Papp ◽  
Zsolt Borhegyi ◽  
Ryohei Tomioka ◽  
Kathleen S. Rockland ◽  
István Mody ◽  
...  

2014 ◽  
Vol 270 ◽  
pp. 316-325 ◽  
Author(s):  
Ignacio R. Covelo ◽  
Zaid I. Patel ◽  
Jennifer A. Luviano ◽  
Thomas R. Stratford ◽  
David Wirtshafter

Sign in / Sign up

Export Citation Format

Share Document