scholarly journals Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex

2018 ◽  
Author(s):  
Diego Gauto ◽  
Leandro Estrozi ◽  
Charles Schwieters ◽  
Gregory Effantin ◽  
Pavel Macek ◽  
...  

Atomic-resolution structure determination is the key requirement for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enabled determination of the high-resolution structure of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Angstrom by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and specifically labelled methyl groups, and a 4.1 Angstrom resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution (up to 8 Angstrom) cryo-EM data are available, thus paving avenues for the structure determination of challenging biological assemblies.

2019 ◽  
Vol 116 (3) ◽  
pp. 310a
Author(s):  
Manman Lu ◽  
Mingzhang Wang ◽  
Jochem Struppe ◽  
Werner Maas ◽  
Angela Gronenborn ◽  
...  

2013 ◽  
Vol 135 (22) ◽  
pp. 8294-8303 ◽  
Author(s):  
Jianping Li ◽  
Kala Bharath Pilla ◽  
Qingfeng Li ◽  
Zhengfeng Zhang ◽  
Xuncheng Su ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Jonathan Ashmore ◽  
Bridget Carragher ◽  
Peter B Rosenthal ◽  
William Weis

Cryo electron microscopy (cryoEM) is a fast-growing technique for structure determination. Two recent papers report the first atomic resolution structure of a protein obtained by averaging images of frozen-hydrated biomolecules. They both describe maps of symmetric apoferritin assemblies, a common test specimen, in unprecedented detail. New instrument improvements, different in the two studies, have contributed better images, and image analysis can extract structural information sufficient to resolve individual atomic positions. While true atomic resolution maps will not be routine for most proteins, the studies suggest structures determined by cryoEM will continue to improve, increasing their impact on biology and medicine.


2000 ◽  
Vol 53 (12) ◽  
pp. 971 ◽  
Author(s):  
Eric W. Ainscough ◽  
Andrew M. Brodie ◽  
Peter C. Healy ◽  
Joyce M. Waters

The X-ray crystal structure determination of bis[-(phenylcyanamido)bis(triphenylphosphine)copper(I)], [{Cu(PPh3)2(C6H5NCN)}2], (1) is reported. The complex has a centrosymmetric dimeric structure with the phenylcyanamide ligands bridging the copper atoms in a -1,3-fashion. The structure is compared with that of the 4-methylphenylcyanamido complex, [{Cu(PPh3)2(4-MeC6H4NCN)}2] (2), and the differences observed in the Cu–P bond lengths compared with changes in the solid state 31P cross-polarization magic-angle spinning (CPMAS) spectra of the two complexes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Patrick C. A. van der Wel

In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.


2020 ◽  
Vol 27 (9) ◽  
pp. 863-869 ◽  
Author(s):  
Manman Lu ◽  
Ryan W. Russell ◽  
Alexander J. Bryer ◽  
Caitlin M. Quinn ◽  
Guangjin Hou ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Diego F. Gauto ◽  
Leandro F. Estrozi ◽  
Charles D. Schwieters ◽  
Gregory Effantin ◽  
Pavel Macek ◽  
...  

2015 ◽  
Vol 112 (47) ◽  
pp. 14611-14616 ◽  
Author(s):  
Si Yan ◽  
Changmiao Guo ◽  
Guangjin Hou ◽  
Huilan Zhang ◽  
Xingyu Lu ◽  
...  

Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.


1997 ◽  
Vol 62 (3) ◽  
pp. 538-539 ◽  
Author(s):  
Jefferson Chin ◽  
Brad Fell ◽  
Michael J. Shapiro ◽  
John Tomesch ◽  
James R. Wareing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document