scholarly journals Afferent connections of the primary somatosensory cortex of the mouse for contextual and multisensory processing

2019 ◽  
Author(s):  
Ian Omer Massé ◽  
Sohen Blanchet-Godbout ◽  
Gilles Bronchti ◽  
Denis Boire

AbstractSensory information is conveyed from peripheral receptors through specific thalamic relays to primary areas of the cerebral cortex. Information is then routed to specialized areas for the treatment of specific aspects of the sensory signals and to multisensory associative areas. Information processing in primary sensory cortices is influenced by contextual information from top-down projections of multiple cortical motor and associative areas as well as areas of other sensory modalities and higher order thalamic nuclei. The primary sensory cortices are thus located at the interface of the ascending and descending pathways. The theory of predictive coding implies that the primary areas are the site of comparison between the sensory information expected as a function of the context and the sensory information that comes from the environment. To better understand the anatomical basis of this model of sensory systems we have charted the cortical and subcortical afferent inputs in the ipsilateral and contralateral hemispheres of the primary somatosensory cortex of adult C57Bl/6 mice. Iontophoretic injections of the b-fragment of cholera toxin were performed inside the mystacial caudal barrel field, more rostral barrel field and somatosensory cortex outside the barrel field to test the hypothesis that differences exist between these three parts and to compare their projections to the subnetworks built from the Mouse Connectome Project data. The laminar distribution of retrogradely labeled cell bodies was used to classify the projections as feedback, feedforward or lateral. Layer indices range between −1 and 1, indicating feedback and feedforward connections respectively. The primary somatosensory cortex and the barrel field have afferent connections with somatosensory areas, non-somatosensory primary sensory areas, multisensory, motor, associative, and neuromodulatory areas. The caudal part of the barrel field displays different and more abundant cortical and subcortical connections compared to the rest of the primary somatosensory cortex. Layer indices of cortical projections to the primary somatosensory cortex and the barrel field were mainly negative and very similar for ipsilateral and contralateral projections. These data demonstrate that the primary somatosensory cortex receives sensory and non-sensory information from cortical and subcortical sources.

2011 ◽  
Vol 25 ◽  
pp. S194-S195
Author(s):  
A. Chavarría ◽  
J. Pérez-H ◽  
P. Carrillo-Mora ◽  
A. Santamaría ◽  
G. Gutiérrez-Ospina ◽  
...  

2020 ◽  
Author(s):  
N. Frezel ◽  
E. Platonova ◽  
F.F. Voigt ◽  
J.M. Mateos ◽  
R. Kastli ◽  
...  

AbstractNeuronal circuits of the spinal dorsal horn integrate sensory information from the periphery with inhibitory and facilitating input from higher CNS areas. Most previous work focused on projections descending from the hindbrain. Less is known about inputs descending from the cerebral cortex. Here, we identified cholecystokinin (CCK) positive layer 5 pyramidal neurons of the primary somatosensory cortex (CCK+ S1-CST neurons) as a major source of input to the spinal dorsal horn. We combined intersectional genetics and virus-mediated gene transfer to characterize CCK+ S1-CST neurons and to define their presynaptic input and postsynaptic target neurons. We found that S1-CST neurons constitute a heterogeneous population that can be subdivided into distinct molecular subgroups. Rabies-based retrograde tracing revealed monosynaptic input from layer 2/3 pyramidal neurons, from parvalbumin (PV) positive cortical interneurons, and from thalamic relay neurons in the ventral posterolateral nucleus. WGA-based anterograde tracing identified postsynaptic target neurons in dorsal horn laminae III and IV. About 60% of these neurons were inhibitory and about 60% of all spinal target neurons expressed the transcription factor c-Maf. The heterogeneous nature of both S1-CST neurons and their spinal targets suggest complex roles in the fine-tuning of sensory processing.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Matiar Jafari ◽  
Tyson Aflalo ◽  
Srinivas Chivukula ◽  
Spencer Sterling Kellis ◽  
Michelle Armenta Salas ◽  
...  

AbstractClassical systems neuroscience positions primary sensory areas as early feed-forward processing stations for refining incoming sensory information. This view may oversimplify their role given extensive bi-directional connectivity with multimodal cortical and subcortical regions. Here we show that single units in human primary somatosensory cortex encode imagined reaches in a cognitive motor task, but not other sensory–motor variables such as movement plans or imagined arm position. A population reference-frame analysis demonstrates coding relative to the cued starting hand location suggesting that imagined reaching movements are encoded relative to imagined limb position. These results imply a potential role for primary somatosensory cortex in cognitive imagery, engagement during motor production in the absence of sensation or expected sensation, and suggest that somatosensory cortex can provide control signals for future neural prosthetic systems.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
N Frezel ◽  
E Platonova ◽  
F F Voigt ◽  
J M Mateos ◽  
R Kastli ◽  
...  

Abstract Neuronal circuits of the spinal dorsal horn integrate sensory information from the periphery with inhibitory and facilitating input from higher central nervous system areas. Most previous work focused on projections descending from the hindbrain. Less is known about inputs descending from the cerebral cortex. Here, we identified cholecystokinin (CCK) positive layer 5 pyramidal neurons of the primary somatosensory cortex (CCK + S1-corticospinal tract [CST] neurons) as a major source of input to the spinal dorsal horn. We combined intersectional genetics and virus-mediated gene transfer to characterize CCK+ S1-CST neurons and to define their presynaptic input and postsynaptic target neurons. We found that S1-CST neurons constitute a heterogeneous population that can be subdivided into distinct molecular subgroups. Rabies-based retrograde tracing revealed monosynaptic input from layer 2/3 pyramidal neurons, from parvalbumin positive cortical interneurons, and from thalamic relay neurons in the ventral posterolateral nucleus. Wheat germ agglutinin-based anterograde tracing identified postsynaptic target neurons in dorsal horn laminae III and IV. About 60% of these neurons were inhibitory and about 60% of all spinal target neurons expressed the transcription factor c-Maf. The heterogeneous nature of both S1-CST neurons and their spinal targets suggest complex roles in the fine-tuning of sensory processing.


1980 ◽  
Vol 11 (5) ◽  
pp. 321-325
Author(s):  
V. Yu. Ermolaeva ◽  
N. A. Brukhanskaya ◽  
Yu. G. Kratin ◽  
G. A. Tolchenova

2020 ◽  
Author(s):  
Matiar Jafari ◽  
Tyson NS Aflalo ◽  
Srinivas Chivukula ◽  
Spencer S Kellis ◽  
Michelle Armenta Salas ◽  
...  

AbstractClassical systems neuroscience positions primary sensory areas as early feed-forward processing stations for refining incoming sensory information. This view may oversimplify their role given extensive bi-directional connectivity with multimodal cortical and subcortical regions. Here we show that single units in human primary somatosensory cortex encode imagined reaches centered on imagined limb positions in a cognitive motor task. This result suggests a broader role of primary somatosensory cortex in cortical function than previously demonstrated.


2021 ◽  
Author(s):  
Christian Waiblinger ◽  
Peter Y Borden ◽  
Garrett B Stanley

ABSTRACTBehavioral experience and flexibility are crucial for survival in a constantly changing environment. What are the neuronal processes that selectively transform dynamic sensory information into an appropriate behavioral response, and how do these processes adapt to changes in the environment? Here, we use voltage imaging to measure signals in primary somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse. We found that in response to changing sensory stimulus statistics, mice adopt a task strategy that modifies their detection behavior in a context dependent manner as to maintain reward expectation. Correspondingly, neuronal activity in S1 shifts from simply representing stimulus properties to adaptively representing stimulus context in an experience dependent manner. Our results suggest that neuronal signals in S1 are part of an adaptive and dynamic framework that facilitates flexible behavior as an individual gains experience.


Sign in / Sign up

Export Citation Format

Share Document