voltage imaging
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 99)

H-INDEX

19
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Timothy D Weber ◽  
Maria V Moya ◽  
Jerome Mertz ◽  
Michael N Economo

Genetically encoded voltage indicators (GEVIs) hold great promise for monitoring neuronal population activity, but GEVI imaging in dense neuronal populations remains difficult due to a lack of contrast and/or speed. To address this challenge, we developed a novel confocal microscope that allows simultaneous multiplane imaging with high-contrast at near-kHz rates. This approach enables high signal-to-noise ratio voltage imaging in densely labeled populations and minimizes optical crosstalk during concurrent optogenetic photostimulation.


2021 ◽  
Author(s):  
Jelena Platisa ◽  
Xin Ye ◽  
Allison M Ahrens ◽  
Chang Liu ◽  
Ichun A Chen ◽  
...  

Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates which reduces fluorescence detection to near shot noise levels. High-photon flux excitation can overcome photon-limited shot noise but photo-bleaching and photo-damage restricts the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, voltage imaging below the shot noise limit. This framework involved developing: a positive-going voltage indicator with improved spike detection (SpikeyGi); an ultra-fast two-photon microscope for kilohertz frame-rate imaging across a 0.4x0.4mm2 field of view, and; a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise limited signals. Through these combined advances, we achieved simultaneous high-speed, deep-tissue imaging of more than one hundred densely-labeled neurons over one hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.


2021 ◽  
Author(s):  
Renan M. Costa ◽  
Douglas A. Baxter ◽  
John H. Byrne

AbstractLearning engages a high-dimensional neuronal population space spanning multiple brain regions. We identified a low-dimensional signature associated with operant conditioning, a ubiquitous form of learning in which animals learn from the consequences of behavior. Using single-neuron resolution voltage imaging, we identified two low-dimensional motor modules in the neuronal population underlying Aplysia feeding. Our findings point to a temporal shift in module recruitment as the primary signature of operant learning.


2021 ◽  
Vol 5 (12) ◽  
pp. 2170123
Author(s):  
Prasanna Srinivasan ◽  
Nicole M Griffin ◽  
DhananjayP. Thakur ◽  
PradeepM. Joshi ◽  
Alex Nguyen‐Le ◽  
...  

2021 ◽  
Author(s):  
He Tian ◽  
Hunter C. Davis ◽  
J. David Wong-Campos ◽  
Linlin Z. Fan ◽  
Benjamin Gmeiner ◽  
...  

All-optical electrophysiology can be a powerful tool for studying neural dynamics in vivo, as it offers the ability to image and perturb membrane voltage in multiple cells simultaneously. The "Optopatch" constructs combine a red-shifted archaerhodopsin (Arch)-derived genetically encoded voltage indicator (GEVI) with a blue-shifted channelrhodopsin actuator (ChR). We used a video-based pooled screen to evolve Arch-derived GEVIs with improved signal-to-noise ratio (QuasAr6a) and kinetics (QuasAr6b). By combining optogenetic stimulation of individual cells with high-precision voltage imaging in neighboring cells, we mapped inhibitory and gap junction-mediated connections, in vivo. Optogenetic activation of a single NDNF-expressing neuron in visual cortex Layer 1 significantly suppressed the spike rate in some neighboring NDNF interneurons. Hippocampal PV cells showed near-synchronous spikes across multiple cells at a frequency significantly above what one would expect from independent spiking, suggesting that collective inhibitory spikes may play an important signaling role in vivo. By stimulating individual cells and recording from neighbors, we quantified gap junction coupling strengths. Together, these results demonstrate powerful new tools for all-optical microcircuit dissection in live mice.


2021 ◽  
Vol 15 ◽  
Author(s):  
Molly J. Kirk ◽  
Brittany R. Benlian ◽  
Yifu Han ◽  
Arya Gold ◽  
Ashvin Ravi ◽  
...  

We combine a chemically-synthesized, voltage-sensitive fluorophore with a genetically encoded, self-labeling enzyme to enable voltage imaging in Drosophila melanogaster. Previously, we showed that a rhodamine voltage reporter (RhoVR) combined with the HaloTag self-labeling enzyme could be used to monitor membrane potential changes from mammalian neurons in culture and brain slice. Here, we apply this hybrid RhoVR-Halo approach in vivo to achieve selective neuron labeling in intact fly brains. We generate a Drosophila UAS-HaloTag reporter line in which the HaloTag enzyme is expressed on the surface of cells. We validate the voltage sensitivity of this new construct in cell culture before driving expression of HaloTag in specific brain neurons in flies. We show that selective labeling of synapses, cells, and brain regions can be achieved with RhoVR-Halo in either larval neuromuscular junction (NMJ) or in whole adult brains. Finally, we validate the voltage sensitivity of RhoVR-Halo in fly tissue via dual-electrode/imaging at the NMJ, show the efficacy of this approach for measuring synaptic excitatory post-synaptic potentials (EPSPs) in muscle cells, and perform voltage imaging of carbachol-evoked depolarization and osmolarity-evoked hyperpolarization in projection neurons and in interoceptive subesophageal zone neurons in fly brain explants following in vivo labeling. We envision the turn-on response to depolarizations, fast response kinetics, and two-photon compatibility of chemical indicators, coupled with the cellular and synaptic specificity of genetically-encoded enzymes, will make RhoVR-Halo a powerful complement to neurobiological imaging in Drosophila.


2021 ◽  
Author(s):  
Ahmed S Abdelfattah ◽  
Jihong Zheng ◽  
Daniel Reep ◽  
Getahun Tsegaye ◽  
Arthur Tsang ◽  
...  

The ability to optically image cellular transmembrane voltage at millisecond-timescale resolution can offer unprecedented insight into the function of living brains in behaving animals. The chemigenetic voltage indicator Voltron is bright and photostable, making it a favorable choice for long in vivo imaging of neuronal populations at cellular resolution. Improving the voltage sensitivity of Voltron would allow better detection of spiking and subthreshold voltage signals. We performed site saturation mutagenesis at 40 positions in Voltron and screened for increased ΔF/F0 in response to action potentials (APs) in neurons. Using a fully automated patch-clamp system, we discovered a Voltron variant (Voltron.A122D) that increased the sensitivity to a single AP by 65% compared to Voltron. This variant (named Voltron2) also exhibited approximately 3-fold higher sensitivity in response to sub-threshold membrane potential changes. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, with lower baseline fluorescence. Introducing the same A122D substitution to other Ace2 opsin-based voltage sensors similarly increased their sensitivity. We show that Voltron2 enables improved sensitivity voltage imaging in mice, zebrafish and fruit flies. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


2021 ◽  
pp. 2100842
Author(s):  
Prasanna Srinivasan ◽  
Nicole M Griffin ◽  
DhananjayP. Thakur ◽  
PradeepM. Joshi ◽  
Alex Nguyen‐Le ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jinyoung Jang ◽  
Mei Hong Zhu ◽  
Aditi H. Jogdand ◽  
Srdjan D. Antic

In a typical electrophysiology experiment, synaptic stimulus is delivered in a cortical layer (1–6) and neuronal responses are recorded intracellularly in individual neurons. We recreated this standard electrophysiological paradigm in brain slices of mice expressing genetically encoded voltage indicators (GEVIs). This allowed us to monitor membrane voltages in the target pyramidal neurons (whole-cell), and population voltages in the surrounding neuropil (optical imaging), simultaneously. Pyramidal neurons have complex dendritic trees that span multiple cortical layers. GEVI imaging revealed areas of the brain slice that experienced the strongest depolarization on a specific synaptic stimulus (location and intensity), thus identifying cortical layers that contribute the most afferent activity to the recorded somatic voltage waveform. By combining whole-cell with GEVI imaging, we obtained a crude distribution of activated synaptic afferents in respect to the dendritic tree of a pyramidal cell. Synaptically evoked voltage waves propagating through the cortical neuropil (dendrites and axons) were not static but rather they changed on a millisecond scale. Voltage imaging can identify areas of brain slices in which the neuropil was in a sustained depolarization (plateau), long after the stimulus onset. Upon a barrage of synaptic inputs, a cortical pyramidal neuron experiences: (a) weak temporal summation of evoked voltage transients (EPSPs); and (b) afterhyperpolarization (intracellular recording), which are not represented in the GEVI population imaging signal (optical signal). To explain these findings [(a) and (b)], we used four voltage indicators (ArcLightD, chi-VSFP, Archon1, and di-4-ANEPPS) with different optical sensitivity, optical response speed, labeling strategy, and a target neuron type. All four imaging methods were used in an identical experimental paradigm: layer 1 (L1) synaptic stimulation, to allow direct comparisons. The population voltage signal showed paired-pulse facilitation, caused in part by additional recruitment of new neurons and dendrites. “Synaptic stimulation” delivered in L1 depolarizes almost an entire cortical column to some degree.


Sign in / Sign up

Export Citation Format

Share Document