scholarly journals Chloroplasts navigate towards the pathogen interface to counteract infection by the Irish potato famine pathogen

2019 ◽  
Author(s):  
Alexia Toufexi ◽  
Cian Duggan ◽  
Pooja Pandey ◽  
Zachary Savage ◽  
María Eugenia Segretin ◽  
...  

AbstractChloroplasts are light harvesting organelles that arose from ancient endosymbiotic cyanobacteria. Upon immune activation, chloroplasts switch off photosynthesis, produce anti-microbial compounds, and develop tubular extensions called stromules. We report that chloroplasts navigate to the pathogen interface to counteract infection by the Irish potato famine pathogen Phytophthora infestans, physically associating with the specialised membrane that engulfs pathogen haustoria. Outer envelope protein, chloroplast unusual positioning1 (CHUP1), anchors chloroplasts to the host-pathogen interface. Stromules are induced during infection in a CHUP1-dependent manner, embracing haustoria and interconnecting chloroplasts, to form dynamic organelle clusters. Infection-triggered reprogramming of chloroplasts relies on surface immune signalling, whereas pathogen effectors subvert these immune pulses. Chloroplast are deployed focally, and coordinate to restrict pathogen entry into plant cells, a process actively countered by parasite effectors.

2014 ◽  
Vol 70 (a1) ◽  
pp. C826-C826
Author(s):  
Abbas Maqbool ◽  
Richard Richard ◽  
Tolga Bozkurt ◽  
Yasin Dagdas ◽  
Khaoula Belhai ◽  
...  

Autophagy is a catabolic process involving degradation of dysfunctional cytoplasmic components to ensure cellular survival under starvation conditions. The process involves formation of double-membrane vesicles called autophagosomes and delivery of the inner constituents to lytic compartments. It can also target invading pathogens, such as intracellular bacteria, for destruction and is thus implicated in innate immune pathways [1]. In response, certain mammalian pathogens deliver effector proteins into host cells that inhibit autophagy and contribute to enabling parasitic infection [2]. Pyhtophthora infestans, the Irish potato famine pathogen, is a causative agent of late blight disease in potato and tomato crops. It delivers a plethora of modular effector proteins into plant cells to promote infection. Once inside the cell, RXLR-type effector proteins engage with host cell proteins, to manipulate host cell physiology for the benefit of the pathogen. As plants lack an adaptive immune system, this provides a robust mechanism for pathogens to circumvent host defense. PexRD54 is an intracellular RXLR-type effector protein produced by P. infestans. PexRD54 interacts with potato homologues of autophagy protein ATG8 in plant cells. We have been investigating the structural and biochemical basis of the PexRD54/ATG8 interaction in vitro. We have purified PexRD54 and ATG8 independently and in complex from E. coli. Using protein/protein interaction studies we have shown that PexRD54 binds ATG8 with sub-micromolar affinity. We have also determined the structure of PexRD54 in the presence of ATG8. This crystal structure provides key insights into how the previously reported WY-fold of oomycete RXLR-type effectors [3] can be organized in multiple repeats. The structural data also provides insights into the interaction between PexRD54 and ATG8, suggesting further experiments to understand the impact of this interaction on host cell physiology and how this benefits the pathogen.


2012 ◽  
Vol 8 (8) ◽  
pp. e1002875 ◽  
Author(s):  
Mireille van Damme ◽  
Tolga O. Bozkurt ◽  
Cahid Cakir ◽  
Sebastian Schornack ◽  
Jan Sklenar ◽  
...  

BioScience ◽  
1997 ◽  
Vol 47 (6) ◽  
pp. 363-371 ◽  
Author(s):  
William E. Fry ◽  
Stephen B. Goodwin

2021 ◽  
Author(s):  
Erin K. Zess ◽  
Yasin F. Dagdas ◽  
Esme Peers ◽  
Abbas Maqbool ◽  
Mark J. Banfield ◽  
...  

AbstractIn order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM appeared unusual, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind very weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown pressure on this effector in the new host environment.Author SummaryPathogens evolve in concert with their hosts. When a pathogen begins to infect a new host species, known as a “host jump,” the pathogen must evolve to enhance infection and transmission. These evolutionary processes can involve both the gain and loss of genes, as well as dynamic changes in protein function. Here, we describe an example of a pathogen protein that lost a key functional domain following a host jump, a salient example of “regressive evolution.” Specifically, we show that an effector protein from the plant pathogen Phytopthora mirabilis, a host-specific lineage closely related to the Irish potato famine pathogen Phytopthora infestans, has a derived amino acid polymorphism that results in a loss of interaction with certain host machinery.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Marina Pais ◽  
Kentaro Yoshida ◽  
Artemis Giannakopoulou ◽  
Mathieu A. Pel ◽  
Liliana M. Cano ◽  
...  

2021 ◽  
Author(s):  
Cian Duggan ◽  
Eleonora Moratto ◽  
Zachary Savage ◽  
Eranthika Hamilton ◽  
Hiroaki Adachi ◽  
...  

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet the subcellular localization of NLRs pre- and post- activation during pathogen infection remains poorly known. Here we show that NRC4, from the 'NRC' solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extra-haustorial membrane (EHM), presumably to mediate response to perihaustorial effectors, that are recognized by NRC4-dependent sensor NLRs. However not all NLRs accumulate at the EHM, as the closely related helper NRC2, and the distantly related ZAR1, did not accumulate at the EHM. NRC4 required an intact N- terminal coiled coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that post-activation, NRC4 probably undergoes a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection however, NRC4 formed puncta mainly at the EHM and to a lesser extent at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Sign in / Sign up

Export Citation Format

Share Document