scholarly journals Boosting with ALVAC-HIV and AIDSVAX B/E enhances Env constant region 1 and 2 antibody-dependent cellular cytotoxicity

2019 ◽  
Author(s):  
David Easterhoff ◽  
Justin Pollara ◽  
Kan Luo ◽  
William D. Tolbert ◽  
Brianna Young ◽  
...  

AbstractInduction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce non-neutralizing antibodies that kill virus-infected cells as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) antibodies frequently contain potent antibody dependent cellular cytotoxicity (ADCC) making them a vaccine target. Here we explore the effect of delayed and repetitive boosting of RV144 vaccinee recipients with ALVAC/AIDSVAX B/E on the C1C2-specific antibody repertoire. It was found that boosting increased clonal lineage specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific antibody showed that it bound a highly conserved Env gp120 epitope. Thus, rationally designed boosting strategies to affinity mature these type of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than seen in the RV144 trial.SignificanceOver one million people become infected with HIV-1 each year making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine-regimen is the only HIV-1 clinical trial to date to demonstrate vaccine-efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine-efficacy. The RV305 HIV-1 vaccine-regimen was a follow-up boost of RV144 vaccine-recipients that occurred 6-8 years after the conclusion of RV144. Our studies focused on the effect of delayed boosting in humans on the vaccine-induced antibody repertoire. It was found that boosting with a HIV-1 Env vaccine increased antibody-mediated effector function potency and breadth.

2019 ◽  
Vol 94 (4) ◽  
Author(s):  
David Easterhoff ◽  
Justin Pollara ◽  
Kan Luo ◽  
William D. Tolbert ◽  
Brianna Young ◽  
...  

ABSTRACT Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial. IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
William D. Tolbert ◽  
Verna Van ◽  
Rebekah Sherburn ◽  
Marina Tuyishime ◽  
Fang Yan ◽  
...  

ABSTRACT Antibodies (Abs) specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (C1/C2) were induced in the RV144 vaccine trial, where antibody-dependent cellular cytotoxicity (ADCC) correlated with reduced risk of HIV-1 infection. We combined X-ray crystallography and fluorescence resonance energy transfer-fluorescence correlation spectroscopy to describe the molecular basis for epitopes of seven RV144 Abs and compared them to A32 and C11, C1/C2 Abs induced in HIV infection. Our data indicate that most vaccine Abs recognize the 7-stranded β-sandwich of gp120, a unique hybrid epitope bridging A32 and C11 binding sites. Although primarily directed at the 7-stranded β-sandwich, some accommodate the gp120 N terminus in C11-bound 8-stranded conformation and therefore recognize a broader range of CD4-triggered Env conformations. Our data also suggest that Abs of RV144 and RV305, the RV144 follow-up study, although likely initially induced by the ALVAC-HIV prime encoding full-length gp120, matured through boosting with truncated AIDSVAX gp120 variants. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) correlated with a reduced risk of infection from HIV-1 in the RV144 vaccine trial, the only HIV-1 vaccine trial to date to show any efficacy. Antibodies specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (cluster A region) were induced in the RV144 trial and their ADCC activities were implicated in the vaccine efficacy. We present structural analyses of the antigen epitope targets of several RV144 antibodies specific for this region and C11, an antibody induced in natural infection, to show what the differences are in epitope specificities, mechanism of antigen recognition, and ADCC activities of antibodies induced by vaccination and during the course of HIV infection. Our data suggest that the truncated AIDSVAX gp120 variants used in the boost of the RV144 regimen may have shaped the vaccine response to this region, which could also have contributed to vaccine efficacy.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Benjamin von Bredow ◽  
Raiees Andrabi ◽  
Michael Grunst ◽  
Andres G. Grandea ◽  
Khoa Le ◽  
...  

ABSTRACTAs a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/maclineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/macisolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/macinfectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/macEnv and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization.IMPORTANCEHere we show that PGT145, a potent broadly neutralizing antibody to HIV-1, directs the lysis of SIV-infected cells by antibody-dependent cellular cytotoxicity but does not neutralize SIV infectivity. This represents the first instance of cross-reactivity of an HIV-1 Env-specific antibody with SIVsmm/macEnv and reveals that antibody binding affinity can differentiate sensitivity to ADCC from neutralization.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Gamze Isitman ◽  
Ivan Stratov ◽  
Stephen J. Kent

The HIV-1 genome is malleable and a difficult target tot vaccinate against. It has long been recognised that cytotoxic T lymphocytes and neutralising antibodies readily select for immune escape HIV variants. It is now also clear that NK cells can also select for immune escape. NK cells force immune escape through both direct Killer-immunoglobulin-like receptor (KIR)-mediated killing as well as through facilitating antibody-dependent cellular cytotoxicity (ADCC). These newer finding suggest NK cells and ADCC responses apply significant pressure to the virus. There is an opportunity to harness these immune responses in the design of more effective HIV vaccines.


Sign in / Sign up

Export Citation Format

Share Document