scholarly journals Robinson-Foulds Reticulation Networks

2019 ◽  
Author(s):  
Alexey Markin ◽  
Tavis K. Anderson ◽  
Venkata SKT Vadali ◽  
Oliver Eulenstein

AbstractPhylogenetic (hybridization) networks allow investigation of evolutionary species histories that involve complex phylogenetic events other than speciation, such as reassortment in virus evolution or introgressive hybridization in invertebrates and mammals. Reticulation networks can be inferred by solving thereticulation network problem, typically known as thehybridization network problem. Given a collection of phylogenetic input trees, this problem seeks aminimum reticulation networkwith the smallest number of reticulation vertices into which the input trees can be embedded exactly. Unfortunately, this problem is limited in practice, since minimum reticulation networks can be easily obfuscated by even small topological errors that typically occur in input trees inferred from biological data. We adapt the reticulation network problem to address erroneous input trees using the classic Robinson-Foulds distance. TheRF embedding costallows trees to be embedded into reticulation networksinexactly, but up to a measurable error. The adapted problem, called theRobinson-Foulds reticulation network (RF-Network) problemis, as we show and like many other problems applied in molecular biology, NP-hard. To address this, we employ local search strategies that have been successfully applied in other NP-hard phylogenetic problems. Our local search method benefits from recent theoretical advancements in this area. Further, we introduce inpractice effective algorithms for the computational challenges involved in our local search approach. Using simulations we experimentally validate the ability of our method,RF-Net, to reconstruct correct phylogenetic networks in the presence of error in input data. Finally, we demonstrate how RF-networks can help identify reassortment in influenza A viruses, and provide insight into the evolutionary history of these viruses. RF-Net was able to estimate a large and credible reassortment network with 164 taxa.

Pneumologie ◽  
2014 ◽  
Vol 68 (02) ◽  
Author(s):  
C Tarnow ◽  
G Engels ◽  
A Arendt ◽  
F Schwalm ◽  
H Sediri ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
U Grienke ◽  
M Richter ◽  
E Walther ◽  
A Hoffmann ◽  
J Kirchmair ◽  
...  

1982 ◽  
Vol 41 (2) ◽  
pp. 353-359 ◽  
Author(s):  
C M Chu ◽  
S F Tian ◽  
G F Ren ◽  
Y M Zhang ◽  
L X Zhang ◽  
...  

1992 ◽  
Vol 66 (4) ◽  
pp. 2491-2494 ◽  
Author(s):  
P Suárez ◽  
J Valcárcel ◽  
J Ortín

2003 ◽  
Vol 47 (s3) ◽  
pp. 1150-1153 ◽  
Author(s):  
R. J. Manvell ◽  
C. English ◽  
P. H. Jorgensen ◽  
I. H. Brown

Author(s):  
Emily S. Bailey ◽  
Xinye Wang ◽  
Mai-juan Ma ◽  
Guo-lin Wang ◽  
Gregory C. Gray

AbstractInfluenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.


Sign in / Sign up

Export Citation Format

Share Document