scholarly journals Microclimatic effects on alpine plant and flower visitor communities and their interactions

2019 ◽  
Author(s):  
Lisa-Maria Ohler ◽  
Martin Lechleitner ◽  
Robert R. Junker

AbstractHigh-alpine ecosystems are commonly assumed to be particularly endangered by climate warming. Recent research, however, suggests that the heterogeneous topography of alpine landscapes provide microclimatic niches for alpine plants, which may buffer negative effects. Whether the microclimatic heterogeneity also affects higher trophic levels remains unknown. This study shows that the variation in mean seasonal soil temperature within a single alpine pasture is within the same range as in plots differing in nearly 500 m in elevation. This pronounced heterogeneity affected the spatial distribution of plant cover, richness of flowering plant species and plant species composition. These microclimatic effects on plant communities also affected richness of flower visiting insects and the frequency and structure of plant-insect interactions suggesting an effect of microclimate also on higher trophic levels. Our results may stimulate a re-evaluation of the consequences of climate warming on ecosystems that may compensate warming by microclimatic refuges.

2021 ◽  
Vol 9 ◽  
Author(s):  
Katherine Berthon ◽  
Sebastian T. Meyer ◽  
Freya Thomas ◽  
Andrea Frank ◽  
Wolfgang W. Weisser ◽  
...  

The ability of insects to persist in urban greenspace depends on their ability to usefully interact with available plant resources. Greenspace design influences plant–insect interactions by: (1) limiting the plant-species pool available for interaction through plant choice, (2) limiting the insects that are available for interaction through site-occupancy dynamics, and (3) mediating insect preferences based on the context of particular plant–insect interactions through structural barriers, microclimatic changes or competition. We designed an experiment to measure the effect of greenspace design attributes on site occupancy and insect preferences while keeping plant availability constant. Using a set of five functionally distinct flowering plant species (“phytometres”), we used occupancy-detection modelling to test factors affecting probability of visitation for eight groups of pollinating insects (ants, beetles, butterflies, bumblebees, honeybees, small bees, and hoverflies amend other flies) across 102 urban squares in Munich, Germany. We found that the probability of detecting an interaction was low for most functional groups, and situational factors, such as weather or competition from co-occurring flowers, were the primary drivers of visitation. Increasing the proportion of unsealed surfaces and quantity or diversity of flowers on the site had a positive influence on the probability of interaction, and, to a lesser extent, on probability of occupancy. Landscape connectivity and site area were important for only a few groups. Together, our results suggest that small-scale habitat conditions are more important than site context for influencing pollinator visitation. Designers can encourage interaction through contiguous provision of floral resources and unsealed surfaces while limiting internal barriers.


Author(s):  
Lucas Michael Goodman ◽  
Diane M Debinski ◽  
Nicholas J Lyon

Loss of biodiversity due to anthropogenic factors, such as climate change and habitat conversion or loss, is among the largest problems affecting many native ecosystems today. Declines in plant diversity can often have detrimental effects on other forms of biodiversity through cascading trophic systems and negatively impact large-scale ecosystem processes. This is particularly relevant in grassland ecosystems, where in undisturbed systems grasses, forbs, and legumes coexist in diverse communities. Previous studies have explored the hypothesis that loss of plant species negatively impacts biodiversity of other trophic groups and can diminish whole ecosystem functions. In this study we tested how flowering plant species richness influenced arthropod order richness on eight sites in the Grand River Grasslands of south central Iowa, and whether that relationship depended on the vegetation height at which arthropods were sampled. We hypothesized that (1) flowering plant species richness would positively affect arthropod order richness, and that (2) a greater number of arthropod orders would be found 2 centimeters above the ground (hereafter “low”) than 1 meter above the ground (hereafter “high”) at given equal flowering plant species richness. With greater richness of flowering plant species, it is likely that this variety of vegetation supplies a greater amount of habitat available for arthropod communities. Counter to our expectations, flowering plant species richness was not significantly correlated with total arthropod order richness (p = 0.0785). However, richness of “low” arthropod order did increase with an increase in nectar richness (p = 0.0463). Further research including all plant species (rather than merely nectar producing species) and identifying arthropods to a finer taxonomic level may provide more conclusive results supporting our hypotheses. Results of such studies would contribute to the success of biodiversity conservation efforts that focus on bottom-up management practices that can enhance ecosystem functioning at higher trophic levels.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 604
Author(s):  
Kai-Qin Li ◽  
Zong-Xin Ren ◽  
Qiang Li

Background: Flowers are one of the important microhabitats promoting beetle diversity, but little is known about variation in the diversity of these insects at higher elevations. We do not know how divergent habitats influence the distribution of beetles among montane flora. Methods: We sampled beetles systematically in angiosperm flowers at 12 sites at two elevations (2700 m and 3200 m) and in two habitats (meadows and forests) for two consecutive years (2018 and 2019) on the Yulong Snow Mountain in Yunnan, southwestern China. Beetle diversity among sites were compared. Their interactions with flowers of identified plant species were analyzed using bipartite networks approach. Results: We collected 153 species of beetles from 90 plant species recording 3391 interactions. While plant species richness was lower at the higher, 3200 m elevation regardless of habitat type, beetle species richness was not significantly different among sites. Plant-beetle interaction networks were strongly modular and specialized. The structure of networks showed greater differences between elevations than between habitats. The turnover of networks was determined by species composition showing a weak influence by interaction rewiring. Conclusion: Our study showed a high diversity of beetles in flowers at higher elevations within this mountain complex. The role of beetles in plant–insect interactions within some sections of temperate, montane sites appear to be underestimated and warrant further study.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jered M Wendte ◽  
Yinwen Zhang ◽  
Lexiang Ji ◽  
Xiuling Shi ◽  
Rashmi R Hazarika ◽  
...  

In many plant species, a subset of transcribed genes are characterized by strictly CG-context DNA methylation, referred to as gene body methylation (gbM). The mechanisms that establish gbM are unclear, yet flowering plant species naturally without gbM lack the DNA methyltransferase, CMT3, which maintains CHG (H = A, C, or T) and not CG methylation at constitutive heterochromatin. Here, we identify the mechanistic basis for gbM establishment by expressing CMT3 in a species naturally lacking CMT3. CMT3 expression reconstituted gbM through a progression of de novo CHG methylation on expressed genes, followed by the accumulation of CG methylation that could be inherited even following loss of the CMT3 transgene. Thus, gbM likely originates from the simultaneous targeting of loci by pathways that promote euchromatin and heterochromatin, which primes genes for the formation of stably inherited epimutations in the form of CG DNA methylation.


Koedoe ◽  
1977 ◽  
Vol 20 (1) ◽  
Author(s):  
B.L. Penzhorn

Additions to the check list of flowering plants of the Mountain Zebra National Park. Thirteen additional flowering plant species are reported from the Mountain Zebra National Park, increasing the total reported to 371 species.


2018 ◽  
Vol 9 (1) ◽  
pp. 587-597
Author(s):  
Raúl Badillo‐Montaño ◽  
Armando Aguirre ◽  
Miguel A. Munguía‐Rosas

2006 ◽  
Vol 66 (2a) ◽  
pp. 463-471 ◽  
Author(s):  
Y. Antonini ◽  
R. G. Costa ◽  
R. P. Martins

Species of plants used by Melipona quadrifasciata Lepeletier for pollen and nectar gathering in an urban forest fragment were recorded in Belo Horizonte, Minas Gerais, Brazil. Melipona quadrifasciata visited 22 out of 103 flowering plant species. The plant species belonged mainly to Myrtaceae, Asteraceae, and Convolvulaceae (64% of the visits). Melipona quadrifasciata tended to collect pollen or nectar each time, except for Myrtaceae species, from which both pollen and nectar were collected. Bee abundance at flowers did not significantly correlate to food availability (expressed by flowering plant richness). We found a relatively high similarity (50%) between plant species used by M. quadrifasciata, which was also found in studies carried out in São Paulo State. However, low similarity (17%) was found between the results of this study and those of another done in Bahia State, Brazil.


Nature ◽  
1979 ◽  
Vol 281 (5733) ◽  
pp. 670-672 ◽  
Author(s):  
Nickolas M. Waser ◽  
Leslie A. Real

Sign in / Sign up

Export Citation Format

Share Document