scholarly journals Nestin selectively facilitates the phosphorylation of the Lissencephaly-linked protein doublecortin (DCX) by cdk5/p35 to regulate growth cone morphology and Sema3a sensitivity in developing neurons

2019 ◽  
Author(s):  
Christopher J. Bott ◽  
Lloyd P. McMahon ◽  
Jason M. Keil ◽  
Chan Choo Yap ◽  
Kenneth Y. Kwan ◽  
...  

AbstractNestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Lastly, we use cortical cultures derived from DCX knockout mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.Significance StatementNestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.




1989 ◽  
Vol 264 (8) ◽  
pp. 4619-4627
Author(s):  
J M Aletta ◽  
M L Shelanski ◽  
L A Greene




2005 ◽  
Vol 280 (17) ◽  
pp. 16882-16890 ◽  
Author(s):  
Svetlana Ermakova ◽  
Bu Young Choi ◽  
Hong Seok Choi ◽  
Bong Seok Kang ◽  
Ann M. Bode ◽  
...  


1993 ◽  
Vol 104 (4) ◽  
pp. 1263-1272 ◽  
Author(s):  
C.A. Bossie ◽  
M.M. Sanders

A novel intermediate filament cDNA, pG-IF, has been isolated from a Drosophila melanogaster embryonic expression library screened with a polyclonal antiserum produced against a 46 kDa cytoskeletal protein isolated from Kc cells. This 46 kDa protein is known to be immunologically related to vertebrate intermediate filament proteins. The screen resulted in the isolation of four different cDNA groups. Of these, one has been identified as the previously characterized Drosophila nuclear lamin cDNA, Dm0, and a second, pG-IF, demonstrates homology to Dm0 by cross hybridization on Southern blots. DNA sequence analysis reveals that pG-IF encodes a newly identified intermediate filament protein in Drosophila. Its nucleotide sequence is highly homologous to nuclear lamins with lower homology to cytoplasmic intermediate filament proteins. pG-IF predicts a protein of 621 amino acids with a predicted molecular mass of 69,855 daltons. In vitro transcription and translation of pG-IF yielded a protein with a SDS-PAGE estimated molecular weight of approximately 70 kDa. It contains sequence principles characteristic of class V intermediate filament proteins. Its near neutral pI (6.83) and the lack of a terminal CaaX motif suggests that it may represent a lamin C subtype in Drosophila. In situ hybridization to polytene chromosomes detects one band of hybridization on the right arm of chromosome 2 at or near 51A. This in conjunction with Southern blot analysis of various genomic digests suggests one or more closely placed genes while Northern blot analysis detects two messages in Kc cells.



1994 ◽  
Vol 107 (6) ◽  
pp. 1593-1607 ◽  
Author(s):  
A.J. Sarria ◽  
J.G. Lieber ◽  
S.K. Nordeen ◽  
R.M. Evans

Human SW-13 cells express the intermediate filament protein vimentin in a mosaic pattern (Hedberg, K. K. and Chen, L. B. (1986). Exp. Cell Res. 163, 509–517). We have isolated SW-13 clones that do (vim+) or do not (vim-) synthesize vimentin as analyzed using anti-intermediate filament immunofluorescence, electron microscopy and two-dimensional gel analysis of detergent-extracted preparations. Vimentin is the only cytoplasmic intermediate filament protein present in the vim+ cells, and the vim- cells do not contain any detectable cytoplasmic intermediate filament system. The presence or absence of intermediate filaments did not observably affect the distribution of mitochondria, endoplasmic reticulum, microtubules or actin stress fibers when these structures were visualized by fluorescence microscopy. However, electron microscopy and anti-lamin A/C immunofluorescence studies showed that nuclear morphology in vim- cells was frequently characterized by large folds or invaginations, while vim+ cells had a more regular or smooth nuclear shape. When vim- cells were transfected with a mouse vimentin expression plasmid, the synthesis of a mouse vimentin filament network restored the smooth nuclear morphology characteristic of vim+ cells. Conversely, when vim+ cells were transfected with a carboxy-terminally truncated mutant vimentin, expression of the mutant protein disrupted the organization of the endogenous vimentin filaments and resulted in nuclei with a prominently invaginated morphology. These results indicated that in SW-13 cells the vimentin filament system affects the shape of the nucleus.



Sign in / Sign up

Export Citation Format

Share Document