cone morphology
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2666
Author(s):  
Elisa Savino ◽  
Fabrizia Guarnieri ◽  
Jin-Wu Tsai ◽  
Anna Corradi ◽  
Fabio Benfenati ◽  
...  

Mutations in the PRRT2 gene are the main cause for a group of paroxysmal neurological diseases including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. In the mature central nervous system, the protein has both a functional and a structural role at the synapse. Indeed, PRRT2 participates in the regulation of neurotransmitter release, as well as of actin cytoskeleton dynamics during synaptogenesis. Here, we show a role of the protein also during early stages of neuronal development. We found that PRRT2 accumulates at the growth cone in cultured hippocampal neurons. Overexpression of the protein causes an increase in the size and the morphological complexity of growth cones. In contrast, the growth cones of neurons derived from PRRT2 KO mice are smaller and less elaborated. Finally, we demonstrated that the aberrant shape of PRRT2 KO growth cones is associated with a selective alteration of the growth cone actin cytoskeleton. Our data support a key role of PRRT2 in the regulation of growth cone morphology during neuronal development.


2020 ◽  
Vol 40 (19) ◽  
pp. 3720-3740
Author(s):  
Christopher J. Bott ◽  
Lloyd P. McMahon ◽  
Jason M. Keil ◽  
Chan Choo Yap ◽  
Kenneth Y. Kwan ◽  
...  

2019 ◽  
Author(s):  
Christopher J. Bott ◽  
Lloyd P. McMahon ◽  
Jason M. Keil ◽  
Chan Choo Yap ◽  
Kenneth Y. Kwan ◽  
...  

AbstractNestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Lastly, we use cortical cultures derived from DCX knockout mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.Significance StatementNestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Yangyang Chen ◽  
Shengke Yang ◽  
Qian Zhang ◽  
Dan Zhang ◽  
Chunyan Yang ◽  
...  

In order to explore the effects of microstructures of membranes on superhydrophobic properties, it is critical, though, challenging, to study microstructures with different morphologies. In this work, a combination of chemical etching and oxidation was used and some copper meshes were selected for grinding. Two superhydrophobic morphologies could be successfully prepared for oil-water separation: a parabolic morphology and a truncated cone morphology. The surface morphology, chemical composition, and wettability were characterized. The results indicated that the water contact angle and the advancing and receding contact angles of the parabolic morphology were 153.6°, 154.6 ± 1.1°, and 151.5 ± 1.8°, respectively. The water contact angle and the advancing and receding contact angles of the truncated cone morphology were 121.8°, 122.7 ± 1.6°, and 119.6 ± 2.7°, respectively. The separation efficiency of the parabolic morphology for different oil-water mixtures was 97.5%, 97.2%, and 91%. The separation efficiency of the truncated cone morphology was 93.2%, 92%, and 89%. In addition, the values of the deepest heights of pressure resistance of the parabolic and truncated cone morphologies were 21.4 cm of water and 19.6 cm of water, respectively. This shows that the parabolic morphology had good separation efficiency, pressure resistance, and superhydrophobic ability compared with the truncated cone morphology. It illustrates that microstructure is one of the main factors affecting superhydrophobic properties.


2017 ◽  
Vol 216 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Andrew B. Leslie ◽  
Jeremy M. Beaulieu ◽  
Sarah Mathews

Sign in / Sign up

Export Citation Format

Share Document