epigallocatechin gallate
Recently Published Documents


TOTAL DOCUMENTS

2107
(FIVE YEARS 634)

H-INDEX

91
(FIVE YEARS 13)

2023 ◽  
Vol 83 ◽  
Author(s):  
Maryam A. Al-Ghamdi ◽  
A. AL-Enazy ◽  
E.A Huwait ◽  
A. Albukhari ◽  
S. Harakeh ◽  
...  

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.


2022 ◽  
Vol 13 (1) ◽  
pp. 273-279
Author(s):  
Deandra Maharani Widiatmaja ◽  
Alyaa Ulaa Dhiya Ul Haq ◽  
Dinda Dwi Purwati ◽  
Arifa Mustika

Chronic kidney disease (CKD) prevalence keeps increasing worldwide and being particular concern due to its morbidity and mortality. However, current CKD therapy are known to be economically costly and not necessarily provide better outcomes. Epigallocatechin gallate (EGCG) is one of the substances that widely studied as perspective therapeutic agents of CKD due to its anti-inflammatory, antioxidant, and enhancing mitochondrial function ability. However, the use of EGCG is limited to low bioavailability and poor pharmacokinetic profile. Encapsulation of EGCG with PLGA is expected to increase the efficacy of EGCG especially for its use as the kidney protective agent and optimize therapy of CKD. Thus, this study aims to analyze the potency of PLGA-encapsulated EGCG as the adjuvant therapy for CKD. This study was a narrative review summarizes studies related to current adjuvant therapy of CKD. EGCG has beneficial effects in reducing pro-inflammatory cytokines among chronic kidney disease. EGCG also can increase scavenging of free radicals to decrease reactive oxygen species. EGCG is known to enhance mitochondrial function and increase mitochondrial protection to prevent apoptosis in various kidney diseases. Combination of PLGA encapsulation with EGCG has a beneficial effect in improving the delivery, bioavailability, stability, and the pharmacokinetic profile of EGCG. PLGA-encapsulated EGCG also provides a better therapeutic effect on preventing and decreasing progression of kidney damage. Finally, this study concluded that combination of PLGA-encapsulated EGCG has a potency as the adjuvant therapy of CKD.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 397
Author(s):  
Alexander Hedbrant ◽  
Ingrid Persson ◽  
Ann Erlandsson ◽  
Jonny Wijkander

The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts and the polyphenols epigallocatechin gallate (EGCG) and quercetin on PGE2 formation, determined by immunoassay, and protein expression, determined by immunoblotting, of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in human monocytes. Green and black tea extracts, and with a lower potency, Rooibos tea extract, inhibited lipopolysaccharide (LPS) and calcium ionophore-induced PGE2 formation. In addition, all tea extracts inhibited the LPS-induced expression of mPGES-1, and the green and black tea extracts also inhibited, to a lesser extent, COX-2 expression. The tea extracts only marginally reduced cPLA2 expression and had no effect on COX-1 expression. EGCG, present in green and black tea, and quercetin, present in all three teas, also inhibited PGE2 formation and expression of mPGES-1, COX-2 and cPLA2. Cell-based and cell-free assays were also performed to evaluate direct effects on the enzymatic activity of COX and PGE synthases. Mainly, the cell-free assay demonstrated partial inhibition by the tea extracts and polyphenols. However, the inhibition required higher doses compared to the effects demonstrated on protein expression. In conclusion, green and black tea, and to a lesser extent Rooibos tea, are potent inhibitors of PGE2 formation in human monocytes, and mediate their effects by inhibiting the expression of the enzymes responsible for PGE2 formation, especially mPGES-1.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jingyi Li ◽  
Shaoqun Liu ◽  
Peifen Chen ◽  
Jiarong Cai ◽  
Song Tang ◽  
...  

The R2R3-MYB transcription factor (TF) family regulates metabolism of phenylpropanoids in various plant lineages. Species-expanded or specific MYB TFs may regulate species-specific metabolite biosynthesis including phenylpropanoid-derived bioactive products. Camellia sinensis produces an abundance of specialized metabolites, which makes it an excellent model for digging into the genetic regulation of plant-specific metabolite biosynthesis. The most abundant health-promoting metabolites in tea are galloylated catechins, and the most bioactive of the galloylated catechins, epigallocatechin gallate (EGCG), is specifically relative abundant in C. sinensis. However, the transcriptional regulation of galloylated catechin biosynthesis remains elusive. This study mined the R2R3-MYB TFs associated with galloylated catechin biosynthesis in C. sinensis. A total of 118 R2R3-MYB proteins, classified into 38 subgroups, were identified. R2R3-MYB subgroups specific to or expanded in C. sinensis were hypothesized to be essential to evolutionary diversification of tea-specialized metabolites. Notably, nine of these R2R3-MYB genes were expressed preferentially in apical buds (ABs) and young leaves, exactly where galloylated catechins accumulate. Three putative R2R3-MYB genes displayed strong correlation with key galloylated catechin biosynthesis genes, suggesting a role in regulating biosynthesis of epicatechin gallate (ECG) and EGCG. Overall, this study paves the way to reveal the transcriptional regulation of galloylated catechins in C. sinensis.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Parisa Maleki Dana ◽  
Fatemeh Sadoughi ◽  
Zatollah Asemi ◽  
Bahman Yousefi

AbstractChemotherapeutic drugs are used to treat advanced stages of cancer or following surgery. However, cancers often develop resistance against drugs, leading to failure of treatment and recurrence of the disease. Polyphenols are a family of organic compounds with more than 10,000 members which have a three-membered flavan ring system in common. These natural compounds are known for their beneficial properties, such as free radical scavenging, decreasing oxidative stress, and modulating inflammation. Herein, we discuss the role of polyphenols (mainly curcumin, resveratrol, and epigallocatechin gallate [EGCG]) in different aspects of cancer drug resistance. Increasing drug uptake by tumor cells, decreasing drug metabolism by enzymes (e.g. cytochromes and glutathione-S-transferases), and reducing drug efflux are some of the mechanisms by which polyphenols increase the sensitivity of cancer cells to chemotherapeutic agents. Polyphenols also affect other targets for overcoming chemoresistance in cancer cells, including cell death (i.e. autophagy and apoptosis), EMT, ROS, DNA repair processes, cancer stem cells, and epigenetics (e.g. miRNAs).


2022 ◽  
Vol 17 (3) ◽  
pp. 625
Author(s):  
Lorena Fuentes-Broto ◽  
Lorena Perdices ◽  
Francisco Segura ◽  
Ana Cavero ◽  
Elvira Orduna-Hospital ◽  
...  

2022 ◽  
Author(s):  
Yahui Zhang ◽  
Shuya Han ◽  
Yin Wang ◽  
Haihua Zhang ◽  
Chenhuan Yu ◽  
...  

The 28-day oral toxicity test of 5.0 g per kg BW FD-EGCG-NPs on rats did not show any adverse effect. However, Na level in the serum of females and males treated with 10.0 g per kg BW FD-EGCG-NPs or FD-NPs significantly increased (P < 0.05).


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 45
Author(s):  
Mingyan Guo ◽  
Lukas Marek ◽  
Yixia Liang ◽  
Phei Er Saw

Chemotherapy has led to many undesirable side effects, as these are toxic drugs that are unable to differentiate between cancer and normal cells. Polyphenols (tea catechins) are an ideal option as alternative chemotherapeutics owing to their inherent anticancer properties, antioxidant properties and being naturally occurring compounds, are deemed safe for consumption. However, without proper administration, the bioavailability of these compounds is low and inefficient. Therefore, proper delivery of these phenolic compounds is vital for cancer therapy. Herein, we analyzed three potential solutions to creating nanoparticle drugs using naturally occurring phenolic compounds (piceatannol (PIC), epigallocatechin gallate hydrophilic (EGCG) and l-epicatechin (EPI)). By using a simple pi-pi stacking mechanism, we utilized boronated PEG (PEG-Br) as an anchor to efficiently load EPI, PIC and EGCG, respectively, to produce three effective phenolic compound-based nanoparticles, which could be delivered safely in systemic circulation, yet detach from its cargo intracellularly to exert its anticancer effect for effective cancer therapy.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Yuji Tanaka ◽  
Makoto Tsuneoka

We previously reported that lysine-demethylase 2A (KDM2A), a Jumonji-C histone demethylase, is activated by gallic acid to reduce H3K36me2 levels in the rRNA gene promoter and consequently inhibit rRNA transcription and cell proliferation in the breast cancer cell line MCF-7. Gallic acid activates AMP-activated protein kinase (AMPK) and increases reactive oxygen species (ROS) production to activate KDM2A. Esters of gallic acid, propyl gallate (PG) and epigallocatechin gallate (EGCG), and other chemicals, reduce cancer cell proliferation. However, whether these compounds activate KDM2A has yet to be tested. In this study, we found that PG and EGCG decreased rRNA transcription and cell proliferation through KDM2A in MCF-7 cells. The activation of both AMPK and ROS production by PG or EGCG was required to activate KDM2A. Of note, while the elevation of ROS production by PG or EGCG was limited in time, it was sufficient to activate KDM2A. Importantly, the inhibition of rRNA transcription and cell proliferation by gallic acid, PG, or EGCG was specifically observed in MCF-7 cells, whereas it was not observed in non-tumorigenic MCF10A cells. Altogether, these results suggest that the derivatization of gallic acid may be used to obtain new compounds with anti-cancer activity.


Sign in / Sign up

Export Citation Format

Share Document