smooth muscle actin
Recently Published Documents


TOTAL DOCUMENTS

2438
(FIVE YEARS 796)

H-INDEX

88
(FIVE YEARS 9)

Pharmacology ◽  
2022 ◽  
pp. 1-10
Author(s):  
Huihui Hu ◽  
Caipeng Xie ◽  
Zeping Weng ◽  
Pei Yu ◽  
Yuqiang Wang ◽  
...  

<b><i>Introduction:</i></b> Doxorubicin (DOX), an anthracycline antitumor agent, has been widely used against various solid tumors and hematological malignancies. However, the clinical application of DOX is restricted by its multiple organ toxicity including nephrotoxicity. This study investigated the protective effects and mechanisms of dexrazoxane (DZR) against DOX-induced nephropathy in rats. <b><i>Methods:</i></b> Male Sprague Dawley rats received 2.5 mg/kg DOX once a week for 5 consecutive weeks. 24-h urinary protein and renal function injury biomarkers were determined to evaluate the renal function. Histopathological changes and glomerulosclerosis were examined by hematoxylin and eosin and periodic acid-Schiff staining. The change of renal ultrastructure in the DOX-induced rats was observed by the electron microscopy. The renal apoptosis was detected by TUNEL staining and measured the protein expression of Caspase-3, Bcl-2, and Bax. Renal interstitial fibrosis was determined by Masson staining and immunohistochemistry examination. The levels of vimentin, alpha-smooth muscle actin (α-SMA), and transforming growth factor β (TGF-β) in kidney tissue were detected by Western blot. <b><i>Results:</i></b> DZR pretreatment markedly raised the survival rate and improved the renal dysfunction in DOX-treated rats. DZR ameliorated DOX-induced histopathological lesion of glomerular and tubular and apoptosis. DZR restored the oxidant/antioxidant balance via regulating the levels of MDA, SOD, and TAC. DZR reduced DOX-induced collagen IV deposition and renal interstitial fibrosis and downregulated the fibrosis-related protein expressions of vimentin, α-SMA, and TGF-β1. <b><i>Conclusion:</i></b> Our results suggest DZR exerted its protective effects against DOX-induced nephropathy through inhibition of lipid peroxidation, apoptosis, and fibrosis.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Svenja Hartung ◽  
Angelika Weyrich ◽  
Manuel Moroni ◽  
Marcelo Gómez ◽  
Christiane Herden

Gurltia paralysans, a metastrongyloid nematode, parasitizes in meningeal vessels in the thoracolumbar spinal cord of cats in South America and causes progressive paraparesis. Recently, the first report outside of South America described gurltiosis in a cat in Spain. As this parasitic disease has so far been largely neglected, especially outside of South America, the aim of the present case study was to add knowledge to the histologic and immunohistochemical characterization of central nervous lesions. To this purpose, formalin-fixed and paraffin-embedded (FFPE) tissue samples from the spinal cord and brain of five cats affected by clinical signs caused by Gurltia paralysans and of three control cats without CNS lesions were histopathologically examined using hematoxylin and eosin stain (HE), Elastica van Gieson stain, as well as periodic acid–Schiff (PAS) reaction. Moreover, immuno- histochemistry for alpha smooth muscle actin and Factor VIII-related antigen were performed to characterize vascular lesions. Lesions were consistent with previous descriptions and were mainly located in the spinal cord and consisted of chronic suppurative or lymphoplasmahistiocytic meningi tis as well as suppurative vasculitis, congestion and varicosis of meningeal veins. In view of the recent detection of this parasite in Europe and the increasing inner-European transport of rescued domestic cats, veterinarians in Europe should be aware of the clinical and pathomorphological presentation of this disease.


2022 ◽  
Author(s):  
Fei Huang ◽  
Yu Hui ◽  
Ang Li ◽  
Rishalaiti Tayier ◽  
Dilinaer Yaermaimaiti ◽  
...  

Abstract Endemic arsenism is a major disease concern in China, with arsenic poisoning and induced potential lesions key issues on a global level. The liver is the main target organ where arsenic is metabolized; chronic exposure to arsenic-induced liver fibrosis is also closely related to autophagy, however, the exact mechanisms are remain unclear. In this study, we explored the effects of NaAsO2 on apoptosis and autophagy in human hepatic stellate cells(HSC). We established a fibrosis model in the HSC line, LX-2 which was exposed to NaAsO2 for 24h, 48h, and 72h. Cells were then transfected using an autophagy double-labeled RFP-GFP-LC3 adenoviral plasmid. Laser confocal microscopy indicated significant infection efficiencies and autophagy in LX-2. Flow cytometry was also used to investigate the effects of different NaAsO2 doses on apoptosis. NaAsO2 treatment upregulated the expression of autophagic markers, including microtubule-associated protein light chain A/B(LC3), ubiquitin binding protein(SQSTM-1/P62), autophagy related genes(ATGs), recombinant human autophagy effector protein (Beclin-1), and B cell lymphoma-2(BCL-2), but downregulated mammalian target of rapamycin(mTOR). Also, α-smooth muscle actin(α-SMA) expression was significantly upregulated in all NaAsO2 groups. Furthermore, mTOR silencing via 3-methyladenine(3-MA) altered NaAsO2 induced autophagy, LC3, Beclin-1, and SQSTM-1/P62 expression were all upregulated in both NaAsO2 and 3-MA-iAs groups. Altogether, NaAsO2 induced HSC autophagy via apoptotic pathways. 3-MA inhibited LX-2 activity and reduced NaAsO2-induced autophagy which may inhibit fibrosis progression caused by this toxin.


Author(s):  
Brian A. Aguado ◽  
Cierra J. Walker ◽  
Joseph C. Grim ◽  
Megan E. Schroeder ◽  
Dilara Batan ◽  
...  

Background: Aortic valve stenosis (AVS) is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain under explored. Methods: Hydrogel scaffolds were designed to recapitulate key aspects of the valve tissue microenvironment and serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to pro-fibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA-sequencing was used to define pathways involved in driving sex-dependent activation. Interventions using small molecule inhibitors and small interfering RNA (siRNA) transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. Results: In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker, alpha-smooth muscle actin (α-SMA), compared to male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-SMA stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase (RhoA/ROCK) signaling as a potential driver of this sex-dependent myofibroblast activation. Further, we found that genes that escape X-chromosome inactivation, such as BMX and STS (encoding for Bmx non-receptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation via RhoA/ROCK signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation via RhoA/ROCK signaling. Conclusions: Together, in vivo and in vitro results confirm sex-dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent AVS progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of AVS and help guide sex-based precision therapies.


Author(s):  
Scott Hoffmann ◽  
Linda Mullins ◽  
Sebastien Rider ◽  
Cara Brown ◽  
Charlotte B. Buckley ◽  
...  

Background: The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. Methods: We generated zebrafish with CRISPR-Cas9-targeted knockout of renin ( ren −/− ) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren −/− with ren +/+ zebrafish and with the metanephric kidneys of Ren1 c−/− and Ren1 c +/+ mice. Results: The ren −/− larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren −/− mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1 c−/− mouse kidney. Fluorescent reporters for renin and smooth muscle actin ( tg(ren:LifeAct-RFP; acta2:EGFP )), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren −/− fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1 YFP Ren1 c−/− mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. Conclusions: Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival.


2022 ◽  
Vol 11 ◽  
Author(s):  
Dan Xu ◽  
Jie Zhou ◽  
Hao Mei ◽  
Huan Li ◽  
Wenbo Sun ◽  
...  

BackgroundCerebrospinal fluid (CSF) plays an important role in maintaining tissue homeostasis in the central nervous system. In 2012, the new CSF outflow pathway, “the glymphatic system,” was discovered. The glymphatic system mediates CSF and interstitial fluid exchange through the perivascular pathway, which eliminates harmful solutes in the brain parenchyma. In recent studies, the importance of the glymphatic system has been demonstrated in healthy and neurodegenerative disease brains. However, there is limited research on the function of the CSF in brain tumors. Intracranial hypertension caused by glioma can affect CSF drainage, which impacts the delivery of chemotherapy drugs via intrathecal injection. This study focused on changes in the glymphatic system and the role of aquaporin 4 (AQP4) in glymphatic transport in glioma.MethodsIn glioma-bearing rats, the effect of tracer infusion on the intracranial pressure (ICP) was evaluated using an ICP microsensor. In vivo magnetic resonance imaging and ex vivo bright field were used to monitor CSF tracer distribution after cisterna magna injection. AQP4 expression was quantitatively detected, and AQP4 in the astrocytes around the vessels was observed using immunofluorescence.ResultsThe ICP of the tumor group was higher than that of the control group and the infusion rate of 2 µl/min did not affect ICP. In vivo and ex vivo imaging showed that the circulation of CSF tracers was significantly impaired in the tumor. High-power confocal microscopy revealed that, in the tumor, the surrounding of AQP4 by Evans Blue was decreased. In both tumor and contralateral areas, data indicated that the number of cluster designation 34 (CD34+) alpha-smooth muscle actin (α-SMA−) veins were more than that of CD34+α-SMA+ arteries. Moreover, in the tumor area, AQP4 in the astrocytes around the vessels was decreased.ConclusionsThese findings indicate that the para-arterial influx of subarachnoid CSF is limited in glioma, especially in those with reduced levels of the fundamental protein AQP4. Our results provide evidence toward a potential new treatment method for glioma in the future.


2022 ◽  
Author(s):  
Abigail J. Clevenger ◽  
Logan Z. Crawford ◽  
Dillon Noltensmeyer ◽  
Hamed Babaei ◽  
Samuel B. Mabbott ◽  
...  

Peristalsis is a nuanced mechanical stimulus comprised of multi-axial strain (radial and axial strain) and shear stress. Forces associated with peristalsis regulate diverse biological functions including digestion, reproductive function, and urine dynamics. Given the central role peristalsis plays in physiology and pathophysiology, we were motivated to design a bioreactor capable of holistically mimicking peristalsis. We engineered a novel rotating screw-drive based design combined with a peristaltic pump, in order to deliver multiaxial strain and concurrent shear stress to a biocompatible polydimethylsiloxane (PDMS) membrane “wall”. Radial indentation and rotation of the screw drive against the wall demonstrated multi-axial strain evaluated via finite element modeling. Experimental measurements of strain using piezoelectric strain resistors were in close alignment of model-predicted values (15.9 ± 4.2% vs. 15.2% predicted). Modeling of shear stress on the ‘wall’ indicated a uniform velocity profile and a moderate shear stress of 0.4 Pa. Human mesenchymal stem cells (hMSCs) seeded on the PDMS ‘wall’ and stimulated with peristalsis demonstrated dramatic changes in actin filament alignment, proliferation, and nuclear morphology compared to static controls, perfusion or strain, indicating that hMSCs sensed and responded to peristalsis uniquely. Lastly, significant differences were observed in gene expression patterns of Calponin, Caldesmon, Smooth Muscle Actin, and Transgelin, corroborating the propensity of hMSCs toward myogenic differentiation in response to peristalsis. Collectively, our data suggests that the peristalsis bioreactor is capable of generating concurrent multi-axial strain and shear stress on a ‘wall’. hMSCs experience peristalsis differently than perfusion or strain, resulting in changes in proliferation, actin fiber organization, smooth muscle actin expression, and genetic markers of differentiation. The peristalsis bioreactor device has broad utility in the study of development and disease in several organ systems.


2022 ◽  
pp. 104063872110693
Author(s):  
Svenja Hartung ◽  
Elfi K. Schlohsarczyk ◽  
Alexandra Jost ◽  
Marlene Sickinger ◽  
Kernt Köhler

In human and veterinary medicine, mixed Müllerian tumors (MMTs) are rarely diagnosed neoplasms of the tubular female genital tract. Although there are case reports of malignant MMTs in various species, benign MMTs have only been described once in a macaque. Here we present a case of benign MMT in a 12-y-old goat, and review the literature on uterine, cervical, and vaginal neoplasia in goats. The doe was presented with vaginal discharge and was euthanized because of the high suspicion of intraabdominal neoplasia. On gross examination, an ulcerated vaginal mass was identified. Histologically, 2 distinct cell populations were present: smooth muscle cells that were well differentiated and positive for alpha–smooth muscle actin, and ciliated columnar epithelial cells that lined ductal structures and had no signs of malignancy. These findings led to the diagnosis of neoplasia of Müllerian origin. Benign MMT should be considered as a differential diagnosis for uterine and vaginal neoplasms in goats.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomohisa Hayakawa ◽  
Fumitaka Fujita ◽  
Fumihiro Okada ◽  
Kiyotoshi Sekiguchi

AbstractSweat glands play an important role in thermoregulation via sweating, and protect human vitals. The reduction in sweating may increase the incidence of hyperthermia. Myoepithelial cells in sweat glands exhibit stemness characteristics and play a major role in sweat gland homeostasis and sweating processes. Previously, we successfully passaged primary myoepithelial cells in spheroid culture systems; however, they could not be maintained for long under in vitro conditions. No myoepithelial cell line has been established to date. In this study, we transduced two immortalizing genes into primary myoepithelial cells and developed a myoepithelial cell line. When compared with primary sweat gland cells, the immortalized myoepithelial cells (designated "iEM") continued to form spheroids after the 4th passage and expressed α-smooth muscle actin and other proteins that characterize myoepithelial cells. Furthermore, treatment with small compounds targeting the Wnt signaling pathways induced differentiation of iEM cells into luminal cells. Thus, we successfully developed an immortalized myoepithelial cell line having differentiation potential. As animal models are not useful for studying human sweat glands, our cell line will be helpful for studying the mechanisms underlying the pathophysiology of sweating disorders.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Taheruzzaman Kazi ◽  
Abir Nagata ◽  
Takatoshi Nakagawa ◽  
Takashi Matsuzaki ◽  
Shigeki Inui

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs). To understand the effect of DPC-EVs on cell differentiation, DPC-EVs were characterized and incubated with ASCs, of monolayer and spheroid cell cultures, in combination with the CAO1/2FP medium specialized for dermal papilla cells (DPCs). DPC-like properties in ASCs were initially evaluated by comparing several genes and proteins with those of DPCs via real-time PCR analysis and immunostaining, respectively. We also evaluated the presence of hair growth-related microRNAs (miRNAs), specifically mir-214-5P, mir-218-5p, and mir-195-5P. Here, we found that miRNA expression patterns varied in DPC-EVs from passage 4 (P4) or P5. In addition, DPC-EVs in combination with CAP1/2FP accelerated ASC proliferation at low concentrations and propagated hair inductive gene expression for versican (vcan), alpha-smooth muscle actin (α-sma), osteopontin (opn), and N-Cam (ncam). Comparison between the expression of hair inductive genes (vcan, α-sma, ctnb, and others), the protein VCAN, α-SMA and β-Catenin (CTNB), and hair inductive miRNAs (mir-214-5P, mir-218-5p, and mir-195-5p) of DPC-EVs revealed similarities between P4 DPC-EVs-treated ASCs and DPCs. We concluded that early passage DPC-EVs, in combination with CAP1/2FP, enabled ASCs to transdifferentiate into DPC-like cells.


Sign in / Sign up

Export Citation Format

Share Document