scholarly journals Single Cell Gene Expression Analysis Reveals Human Stem Cell-Derived Graft Composition in a Cell Therapy Model of Parkinson’s Disease

2019 ◽  
Author(s):  
Katarína Tiklová ◽  
Sara Nolbrant ◽  
Alessandro Fiorenzano ◽  
Åsa K. Björklund ◽  
Yogita Sharma ◽  
...  

Since the pioneering studies using fetal cell transplants in Parkinson’s disease (PD), brain repair by cell replacement has remained a long-standing and realistic goal for the treatment of neurodegenerative disorders including PD. Authentic and functional midbrain dopamine (DA) neurons can now be generated from human pluripotent stem cells (hPSCs) via a floor plate intermediate1,2, and these cell preparations are both safe and functional when transplanted to animal models of PD3. However, although resulting grafts from fetal brain tissue and hPSCs contain large numbers of desired DA neurons, these therapeutic cells are a minor component of the grafts. Moreover, the cellular composition of the graft has remained difficult to assess due to limitations in histological methods that rely on pre-conceived notions concerning cell types. Here, we used single cell RNA sequencing (scRNA-seq) combined with comprehensive histological analyses to characterize intracerebral grafts from ventral midbrain (VM)-patterned human embryonic stem cells (hESCs) and VM fetal tissue after long-term survival and functional maturation in a pre-clinical rat model of PD. The analyses revealed that while both cell preparations gave rise to neurons and astrocytes, oligodendrocytes were only detected in grafts of fetal tissue. On the other hand, a cell type closely resembling a class of newly identified perivascular-like cells was identified as a unique component of hESC-derived grafts. The presence of these cells was confirmed in transplants from three different hESC lines, as well as from iPSCs. Thus, these experiments have addressed one of the major outstanding questions in the field of cell replacement in neurological disease by revealing graft composition and differences between hESC- and fetal cell-derived grafts, which can have important implications for clinical trials.

2021 ◽  
Author(s):  
Marina Galdino da Rocha Pitta ◽  
Jordy Silva de Carvalho ◽  
Luzilene Pereira de Lima ◽  
Ivan da Rocha Pitta

Background: Parkinson’s disease (PD) is a neurological disorder that affects movement, mainly due to damage and degeneration of the nigrostriatal dopaminergic pathway. The diagnosis is made through a clinical neurological analysis where motor characteristics are considered. There is still no cure, and treatment strategies are focused on symptoms control. Cell replacement therapies emerge as an alternative. Objective: This review focused on current techniques of induced pluripotent stem cells (iPSCs). Methods: The search terms used were: “Parkinson’s Disease”, “Stem cells” and “iPSC”. Open articles written in English, from 2016-21 were selected in the Pubmed database, 10 publications were identified. Results: With the modernization of iPSC, it was possible to reprogram pluripotent human somatic cells and generate dopaminergic neurons and individual-specific glial cells. To understand the molecular basis, cell and animal models of neurons and organelles are currently being employed. Organoids are derived from stem cells in a three-dimensional matrix, such as matrigel or hydrogels derived from animals. The neuronal models are: α-synuclein (SNCA), leucine-rich repeat kinase2 (LRRK2), PARK2, putative kinase1 induced by phosphatase and tensin homolog (PINK1), DJ-1. Both models offer opportunities to investigate pathogenic mechanisms of PD and test compounds on human neurons. Conclusions: Cell replacement therapy is promising and has great capacity for the treatment of neurodegenerative diseases. Studies using iPSC neuron and PD organoid modeling is highly valuable in elucidating relevants neuronal pathways and therapeutic targets, moreover providing important models for testing future therapies.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarína Tiklová ◽  
Sara Nolbrant ◽  
Alessandro Fiorenzano ◽  
Åsa K. Björklund ◽  
Yogita Sharma ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong Fan ◽  
Winanto ◽  
Shi-Yan Ng

Abstract Background Stem cells hold tremendous promise for regenerative medicine because they can be expanded infinitely, giving rise to large numbers of differentiated cells required for transplantation. Stem cells can be derived from fetal sources, embryonic origins (embryonic stem cells or ESCs) or reprogrammed from adult cell types (induced pluripotent stem cells or iPSCs). One unique property of stem cells is their ability to be directed towards specific cell types of clinical interest, and can mature into functional cell types in vivo. While transplantations of fetal or ESC-derived tissues are known to illicit a host immunogenic response, autologous transplantations using cell types derived from one’s own iPSCs eliminate risks of tissue rejection and reduce the need for immunosuppressants. However, even with these benefits, cell therapy comes with significant hurdles that researchers are starting to overcome. In this review, we will discuss the various steps to ensure safety, efficacy and clinical practicality of cell replacement therapy in neurodegenerative diseases, in particular, Parkinson’s disease. Main body Parkinson’s disease (PD) results from a loss of dopaminergic neurons from the substantia nigra and is an ideal target for cell replacement therapy. Early trials using fetal midbrain material in the late 1980s have resulted in long term benefit for some patients, but there were multiple shortcomings including the non-standardization and quality control of the transplanted fetal material, and graft-induced dyskinesia that some patients experience as a result. On the other hand, pluripotent stem cells such as ESCs and iPSCs serve as an attractive source of cells because they can be indefinitely cultured and is an unlimited source of cells. Stem cell technologies and our understanding of the developmental potential of ESCs and iPSCs have deepened in recent years and a clinical trial for iPSC-derived dopaminergic cells is currently undergoing for PD patients in Japan. In this focused review, we will first provide a historical aspect of cell therapies in PD, and then discuss the various challenges pertaining to the safety and efficacy of stem cell-based cell transplantations, and how these hurdles were eventually overcome. Conclusion With the maturity of the iPSC technology, cell transplantation appears to be a safe and effective therapy. Grafts in non-human primates survive and remain functional for more than 2 years after transplantation, with no signs of tumorigenesis, indicating safety and efficacy of the treatment. However, immunosuppressants are still required because of the lack of “universal stem cells” that would not evoke an immune response. The results of ongoing and upcoming trials by a global consortium known as GForce-PD would be highly anticipated because the success of these trials would open up possibilities for using cell therapy for the treatment of PD and other degenerative diseases.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarína Tiklová ◽  
Sara Nolbrant ◽  
Alessandro Fiorenzano ◽  
Åsa K. Björklund ◽  
Yogita Sharma ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 185-213 ◽  
Author(s):  
Florence Wianny ◽  
Julien Vezoli

Abstract. In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.


Sign in / Sign up

Export Citation Format

Share Document