scholarly journals Ancestral mitochondrial apparatus derived from the bacterial type II secretion system

2019 ◽  
Author(s):  
Lenka Horváthová ◽  
Vojtěch Žárský ◽  
Tomáš Pánek ◽  
Romain Derelle ◽  
Jan Pyrih ◽  
...  

AbstractThe type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the formation of a mitochondrial T2SS-derived protein secretion system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lenka Horváthová ◽  
Vojtěch Žárský ◽  
Tomáš Pánek ◽  
Romain Derelle ◽  
Jan Pyrih ◽  
...  

AbstractThe type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion.


2020 ◽  
Vol 26 (S2) ◽  
pp. 2734-2735
Author(s):  
Zhili Yu ◽  
Tong Huo ◽  
Muyuan Chen ◽  
Xiaodong Shi ◽  
Steven Ludtke ◽  
...  

2014 ◽  
Vol 94 (1) ◽  
pp. 126-140 ◽  
Author(s):  
Camille Pineau ◽  
Natalia Guschinskaya ◽  
Xavier Robert ◽  
Patrice Gouet ◽  
Lionel Ballut ◽  
...  

2007 ◽  
Vol 74 (3) ◽  
pp. 753-761 ◽  
Author(s):  
Ombeline Rossier ◽  
Jenny Dao ◽  
Nicholas P. Cianciotto

ABSTRACT Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular parasite of aquatic amoebae and human macrophages. A key factor for L. pneumophila in intracellular infection is its type II protein secretion system (Lsp). In order to more completely define Lsp output, we recently performed a proteomic analysis of culture supernatants. Based upon the predictions of that analysis, we found that L. pneumophila secretes two distinct aminopeptidase activities encoded by the genes lapA and lapB. Whereas lapA conferred activity against leucine, phenylalanine, and tyrosine aminopeptides, lapB was linked to the cleavage of lysine- and arginine-containing substrates. To assess the role of secreted aminopeptidases in intracellular infection, we examined the relative abilities of lapA and lapB mutants to infect human U937 cell macrophages as well as Hartmannella vermiformis and Acanthamoeba castellanii amoebae. Although these experiments identified a dispensable role for LapA and LapB, they uncovered a previously unrecognized role for the type II-dependent ProA (MspA) metalloprotease. Whereas proA mutants were not defective for macrophage or A. castellanii infection, they (but not their complemented derivatives) were impaired for growth upon coculture with H. vermiformis. Thus, ProA represents the first type II effector implicated in an intracellular infection event. Furthermore, proA represents an L. pneumophila gene that shows differential importance among protozoan infection models, suggesting that the legionellae might have evolved some of its factors to especially target certain of their protozoan hosts.


2020 ◽  
Author(s):  
Souvik Naskar ◽  
Michael Hohl ◽  
Matteo Tassinari ◽  
Harry H. Low

2012 ◽  
Vol 287 (12) ◽  
pp. 9072-9080 ◽  
Author(s):  
Shuang Gu ◽  
Geoff Kelly ◽  
Xiaohui Wang ◽  
Tom Frenkiel ◽  
Vladimir E. Shevchik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document