bacterial type
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 92)

H-INDEX

67
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Yi Sun ◽  
Shiva Bakhtiari ◽  
Melissa Valente-Paterno ◽  
Yanxia Wu ◽  
Christopher Law ◽  
...  

Translation is localized within cells to target proteins to their proper locations. We asked whether translation occurs on the chloroplast surface in Chlamydomonas and, if so, whether it is involved in co-translational protein targeting, aligned spatially with localized translation by the bacterial-type ribosomes within this organelle, or both. Our results reveal a domain of the chloroplast envelope which is bound by translating ribosomes. Purified chloroplasts retained ribosomes and mRNAs encoding two chloroplast proteins specifically on this translation domain, but not a mRNA encoding a cytoplasmic protein. Ribosomes clusters were seen on this domain by electron tomography. Activity of the chloroplast-bound ribosomes is supported by results of the ribopuromycylation and puromycin-release assays. Co-translational chloroplast protein import is supported by nascent polypeptide dependency of the ribosome-chloroplast associations. This cytoplasmic translation domain aligns localized translation by organellar bacterial-type ribosomes in the chloroplast. This juxtaposition the dual translation systems facilitates the targeting and assembly of the polypeptide products.


2021 ◽  
Vol 22 (24) ◽  
pp. 13632
Author(s):  
Maria Dumina ◽  
Alexander Zhgun ◽  
Marina Pokrovskaya ◽  
Svetlana Aleksandrova ◽  
Dmitry Zhdanov ◽  
...  

L-asparaginase (L-ASNase) is a biotechnologically relevant enzyme for the pharmaceutical, biosensor and food industries. Efforts to discover new promising L-ASNases for different fields of biotechnology have turned this group of enzymes into a growing family with amazing diversity. Here, we report that thermophile Melioribacter roseus from Ignavibacteriae of the Bacteroidetes/Chlorobi group possesses two L-ASNases—bacterial type II (MrAII) and plant-type (MrAIII). The current study is focused on a novel L-ASNase MrAII that was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 70 °C and pH 9.3, with a high L-asparaginase activity of 1530 U/mg and L-glutaminase activity ~19% of the activity compared with L-asparagine. The kinetic parameters KM and Vmax for the enzyme were 1.4 mM and 5573 µM/min, respectively. The change in MrAII activity was not significant in the presence of 10 mM Ni2+, Mg2+ or EDTA, but increased with the addition of Cu2+ and Ca2+ by 56% and 77%, respectively, and was completely inhibited by Zn2+, Fe3+ or urea solutions 2–8 M. MrAII displays differential cytotoxic activity: cancer cell lines K562, Jurkat, LnCap, and SCOV-3 were more sensitive to MrAII treatment, compared with normal cells. MrAII represents the first described enzyme of a large group of uncharacterized counterparts from the Chlorobi-Ignavibacteriae-Bacteroidetes clade.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 878
Author(s):  
Sylvie Nonin-Lecomte ◽  
Laurence Fermon ◽  
Brice Felden ◽  
Marie-Laure Pinel-Marie

The authors wish to make the following corrections to their paper [...]


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1455
Author(s):  
Aqsa Shaheen ◽  
Anam Tariq ◽  
Mazhar Iqbal ◽  
Osman Mirza ◽  
Abdul Haque ◽  
...  

Quinolone resistance in bacterial pathogens has primarily been associated with mutations in the quinolone resistance-determining regions (QRDRs) of bacterial type-II topoisomerases, which are DNA gyrase and topoisomerase IV. Depending on the position and type of the mutation (s) in the QRDRs, bacteria either become partially or completely resistant to quinolone. QRDR mutations have been identified and characterized in Salmonella enterica isolates from around the globe, particularly during the last decade, and efforts have been made to understand the propensity of different serovars to carry such mutations. Because there is currently no thorough analysis of the available literature on QRDR mutations in different Salmonella serovars, this review aims to provide a comprehensive picture of the mutational diversity in QRDRs of Salmonella serovars, summarizing the literature related to both typhoidal and non-typhoidal Salmonella serovars with a special emphasis on recent findings. This review will also discuss plasmid-mediated quinolone-resistance determinants with respect to their additive or synergistic contributions with QRDR mutations in imparting elevated quinolone resistance. Finally, the review will assess the contribution of membrane transporter-mediated quinolone efflux to quinolone resistance in strains carrying QRDR mutations. This information should be helpful to guide the routine surveillance of foodborne Salmonella serovars, especially with respect to their spread across countries, as well as to improve laboratory diagnosis of quinolone-resistant Salmonella strains.


2021 ◽  
Author(s):  
Zewei Chen ◽  
Ziyi Zhao ◽  
Xinjie Hui ◽  
Junya Zhang ◽  
Yixue Hu ◽  
...  

The proteins secreted through type 1 secretion systems often play important roles in pathogenicity of various gram-negative bacteria. However, the type 1 secretion mechanism remains unknown. In this research, we observed the sequence features of RTX proteins, a major class of type 1 secreted substrates. We found striking non-RTX-motif amino acid composition patterns at the C-termini, most typically exemplified by the enriched '[FLI][VAI]' at the most C-terminal two positions. Machine-learning models, including deep-learning models, were trained using these sequence-based non-RTX-motif features, and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a 5-fold cross-validated sensitivity of ~0.89 at the specificity of ~0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif type 1 secreted proteins, further suggesting their potential existence of common secretion signals. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C-termini, and developed a stacking model that can predict type 1 secreted proteins accurately.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Wickell ◽  
Li-Yaung Kuo ◽  
Hsiao-Pei Yang ◽  
Amra Dhabalia Ashok ◽  
Iker Irisarri ◽  
...  

AbstractTo conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known ‘bacterial-type’ PEPC, along with the ‘plant-type’ exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.


2021 ◽  
Author(s):  
Geun Cheol Song ◽  
Je‐Seung Jeon ◽  
Hye Kyung Choi ◽  
Hee‐Jung Sim ◽  
Sang‐Gyu Kim ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Pratick Khara ◽  
Liqiang Song ◽  
Peter J. Christie ◽  
Bo Hu

Bacterial type IV secretion systems (T4SSs) play central roles in antibiotic resistance spread and virulence. By cryo-electron tomography (CryoET), we solved the structure of the plasmid pKM101-encoded T4SS in the native context of the bacterial cell envelope.


Sign in / Sign up

Export Citation Format

Share Document