scholarly journals Ultrastructure of light-activated axons following optogenetic stimulation to produce late-phase long-term potentiation

2019 ◽  
Author(s):  
Masaaki Kuwajima ◽  
Olga I. Ostrovskaya ◽  
Guan Cao ◽  
Seth A. Weisberg ◽  
Kristen M. Harris ◽  
...  

AbstractAnalysis of neuronal compartments has revealed many state-dependent changes in geometry but establishing synapse-specific mechanisms at the nanoscale has proven elusive. We co-expressed channelrhodopsin2-GFP and mAPEX2 in a subset of hippocampal CA3 neurons and used trains of light to induce late-phase long-term potentiation (L-LTP) in area CA1. L-LTP was shown to be specific to the labeled axons by severing CA3 inputs, which prevented back-propagating recruitment of unlabeled axons. Membrane-associated mAPEX2 tolerated microwave-enhanced chemical fixation and drove tyramide signal amplification to deposit Alexa Fluor dyes in the light-activated axons. Subsequent post-embedding immunogold labeling resulted in outstanding ultrastructure and clear distinctions between labeled (activated), and unlabeled axons without obscuring subcellular organelles. The gold-labeled axons in potentiated slices were reconstructed through serial section electron microscopy; presynaptic vesicles and other constituents could be quantified unambiguously. The genetic specification, reliable physiology, and compatibility with established methods for ultrastructural preservation make this an ideal approach to link synapse ultrastructure and function in intact circuits.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrea M Gomez ◽  
Robert C Froemke ◽  
Steven J Burden

Lrp4, the muscle receptor for neuronal Agrin, is expressed in the hippocampus and areas involved in cognition. The function of Lrp4 in the brain, however, is unknown, as Lrp4−/− mice fail to form neuromuscular synapses and die at birth. Lrp4−/− mice, rescued for Lrp4 expression selectively in muscle, survive into adulthood and showed profound deficits in cognitive tasks that assess learning and memory. To learn whether synapses form and function aberrantly, we used electrophysiological and anatomical methods to study hippocampal CA3–CA1 synapses. In the absence of Lrp4, the organization of the hippocampus appeared normal, but the frequency of spontaneous release events and spine density on primary apical dendrites were reduced. CA3 input was unable to adequately depolarize CA1 neurons to induce long-term potentiation. Our studies demonstrate a role for Lrp4 in hippocampal function and suggest that patients with mutations in Lrp4 or auto-antibodies to Lrp4 should be evaluated for neurological deficits.


2002 ◽  
Vol 22 (11) ◽  
pp. 4312-4320 ◽  
Author(s):  
Wataru Kakegawa ◽  
Nobuaki Yamada ◽  
Masae Iino ◽  
Kimihiko Kameyama ◽  
Tatsuya Umeda ◽  
...  

2008 ◽  
Vol 100 (5) ◽  
pp. 2605-2614 ◽  
Author(s):  
Therése Abrahamsson ◽  
Bengt Gustafsson ◽  
Eric Hanse

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) unsilencing is an often proposed expression mechanism both for developmental long-term potentiation (LTP), involved in circuitry refinement during brain development, and for mature LTP, involved in learning and memory. In the hippocampal CA3–CA1 connection naïve (nonstimulated) synapses are AMPA signaling and AMPA-silent synapses are created from naïve AMPA-signaling (AMPA-labile) synapses by test-pulse synaptic activation (AMPA silencing). To investigate to what extent LTPs at different developmental stages are explained by AMPA unsilencing, the amount of LTP obtained at these different developmental stages was related to the amount of AMPA silencing that preceded the induction of LTP. When examined in the second postnatal week Hebbian induction was found to produce no more stable potentiation than that causing a return to the naïve synaptic strength existing prior to the AMPA silencing. Moreover, in the absence of a preceding AMPA silencing Hebbian induction produced no stable potentiation above the naïve synaptic strength. Thus this early, or developmental, LTP is nothing more than an unsilencing (dedepression) and stabilization of the AMPA signaling that was lost by the prior AMPA silencing. This dedepression and stabilization of AMPA signaling was mimicked by the presence of the protein kinase A activator forskolin. As the relative degree of AMPA silencing decreased with development, LTP manifested itself more and more as a “genuine” potentiation (as opposed to a dedepression) not explained by unsilencing and stabilization of AMPA-labile synapses. This “genuine,” or mature, LTP rose from close to nothing of total LTP prior to postnatal day (P)13, to about 70% of total LTP at P16, and to about 90% of total LTP at P30. Developmental LTP, by stabilization of AMPA-labile synapses, thus seems adapted to select synaptic connections to the growing synaptic network. Mature LTP, by instead strengthening existing stable connections between cells, may then create functionally tightly connected cell assemblies within this network.


Sign in / Sign up

Export Citation Format

Share Document