serial section
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 30)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Vol 15 ◽  
Author(s):  
Daisuke Koga ◽  
Satoshi Kusumi ◽  
Masahiro Shibata ◽  
Tsuyoshi Watanabe

Scanning electron microscopy (SEM) has contributed to elucidating the ultrastructure of bio-specimens in three dimensions. SEM imagery detects several kinds of signals, of which secondary electrons (SEs) and backscattered electrons (BSEs) are the main electrons used in biological and biomedical research. SE and BSE signals provide a three-dimensional (3D) surface topography and information on the composition of specimens, respectively. Among the various sample preparation techniques for SE-mode SEM, the osmium maceration method is the only approach for examining the subcellular structure that does not require any reconstruction processes. The 3D ultrastructure of organelles, such as the Golgi apparatus, mitochondria, and endoplasmic reticulum has been uncovered using high-resolution SEM of osmium-macerated tissues. Recent instrumental advances in scanning electron microscopes have broadened the applications of SEM for examining bio-specimens and enabled imaging of resin-embedded tissue blocks and sections using BSE-mode SEM under low-accelerating voltages; such techniques are fundamental to the 3D-SEM methods that are now known as focused ion-beam SEM, serial block-face SEM, and array tomography (i.e., serial section SEM). This technical breakthrough has allowed us to establish an innovative BSE imaging technique called section-face imaging to acquire ultrathin information from resin-embedded tissue sections. In contrast, serial section SEM is a modern 3D imaging technique for creating 3D surface rendering models of cells and organelles from tomographic BSE images of consecutive ultrathin sections embedded in resin. In this article, we introduce our related SEM techniques that use SE and BSE signals, such as the osmium maceration method, semithin section SEM (section-face imaging of resin-embedded semithin sections), section-face imaging for correlative light and SEM, and serial section SEM, to summarize their applications to neural structure and discuss the future possibilities and directions for these methods.


2021 ◽  
Author(s):  
Gayathri Mahalingam ◽  
Russel Torres ◽  
Daniel Kapner ◽  
Eric T Trautman ◽  
Tim Fliss ◽  
...  

Serial section Electron Microscopy can produce high throughput imaging of large biological specimen volumes. The high-resolution images are necessary to reconstruct dense neural wiring diagrams in the brain, so called connectomes. A high fidelity volume assembly is required to correctly reconstruct neural anatomy and synaptic connections. It involves seamless 2D stitching of the images within a serial section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP(Assembly Stitching and Alignment Pipeline) that is scalable and parallelized to work with distributed systems. The pipeline is built on top of the Render [18] services used in the volume assembly of the brain of adult Drosophila melanogaster [2]. It achieves high throughput by operating on the meta-data and transformations of each image stored in a database, thus eliminating the need to render intermediate output. The modularity of ASAP allows for easy adaptation to new algorithms without significant changes to the workflow. The software pipeline includes a complete set of tools to do stitching, automated quality control, 3D section alignment, and rendering of the assembled volume to disk. We also implemented a workflow engine that executes the volume assembly workflow in an automated fashion triggered following the transfer of raw data. ASAP has been successfully utilized for continuous processing of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex [1, 25]. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.


2021 ◽  
Author(s):  
Norbert Lindow ◽  
Florian N. Brünig ◽  
Vincent J. Dercksen ◽  
Gunar Fabig ◽  
Robert Kiewisz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document