scholarly journals Ectopic HCN4 expression drives mTOR-dependent epilepsy

2019 ◽  
Author(s):  
Lawrence S. Hsieh ◽  
John H. Wen ◽  
Lena H. Nguyen ◽  
Longbo Zhang ◽  
Juan Torres-Reveron ◽  
...  

AbstractThe causative link between focal cortical malformations (FCM) and epilepsy is well-accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we show that FCM neurons are responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP levels, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not that of control pyramidal neurons. Ectopic HCN4 expression was mTOR-dependent, preceded the onset of seizures, and was also found in diseased neurons in tissue resected for epilepsy treatment from TSC and FCDII patients. Finally, blocking HCN4 channel activity in FCM neurons prevented epilepsy in mice. These findings that demonstrate HCN4 acquisition as seizure-genic, identify a novel cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons provides opportunities for using HCN4 as a gene therapy target to treat epilepsy in individuals with FCDII or TSC.One Sentence SummaryOur data provide a novel cAMP-dependent mechanism of seizure initiation in focal cortical dysplasia and tuberous sclerosis complex due to the unexpected ectopic expression of HCN4 channels only in diseased neurons. HCN4 channels are thus promising candidates for gene therapy to treat epilepsy generated by mTOR-driven focal malformations.

2020 ◽  
Vol 12 (570) ◽  
pp. eabc1492
Author(s):  
Lawrence S. Hsieh ◽  
John H. Wen ◽  
Lena H. Nguyen ◽  
Longbo Zhang ◽  
Stephanie A. Getz ◽  
...  

The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide–gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.


2017 ◽  
Vol 27 (6) ◽  
pp. 770-780 ◽  
Author(s):  
Theresa Scholl ◽  
Angelika Mühlebner ◽  
Gerda Ricken ◽  
Victoria Gruber ◽  
Anna Fabing ◽  
...  

2008 ◽  
Vol 12 ◽  
pp. S7
Author(s):  
K. Kotulska ◽  
W. Grajkowska ◽  
J. Jóźwiak ◽  
E. Jurkiewicz ◽  
D. Chmielewski ◽  
...  

2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
S Jozwiak ◽  
K Kotulska ◽  
W Grajkowska ◽  
M Larysz-Brysz ◽  
J Lewin-Kowalik

Sign in / Sign up

Export Citation Format

Share Document