scholarly journals Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing

2003 ◽  
Vol 17 (22) ◽  
pp. 2786-2797 ◽  
Author(s):  
I. B. Lomakin
2002 ◽  
Vol 367 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Nilce N. HASHIMOTO ◽  
Larissa S. CARNEVALLI ◽  
Beatriz A. CASTILHO

The heterotrimeric eukaryotic initiation factor (eIF) 2 binds the initiator methionyl-tRNA in a GTP-dependent mode and delivers it to the 40S ribosomal subunit. In the present study, we have identified amino acid residues in eIF2β required for binding to eIF2γ in yeast. Alteration of six residues in the central region of eIF2β abolished this interaction, as determined by GST-pull down and two-hybrid assays, and leads to cell lethality. Substitution of 131Tyr and 132Ser by alanine residues (131YS), although abolishing the binding to eIF2γ in these assays, resulted in a functional but defective protein in vivo, imparting a temperature-sensitive growth phenotype to cells. A dramatically weakened association of this mutant protein with eIF2γ in vivo was shown by co-immunoprecipitation. The 131YS mutation in eIF2β allows translation to initiate at non-AUG codons, as defined by the ability of cells carrying an initiator codon mutation in the HIS4 mRNA to grow in the absence of histidine. The combination of this mutation with the 264Ser→Tyr alteration, a previously isolated suppressor of initiator codon mutations which has been shown to increase the spontaneous GTP hydrolysis in the ternary complex, caused a recessive lethality, suggesting additive defects. Thus the impaired interaction of these two subunits represents a novel type of defect in eIF2 function, providing in vivo evidence that the strength of interaction between eIF2β and eIF2γ defines the correct usage of the AUG codon for translation initiation.


2019 ◽  
Vol 39 (19) ◽  
Author(s):  
Yi-Ting Wang ◽  
Yu-Chen Chien ◽  
Wan-Yi Hsiao ◽  
Chien-Chia Wang ◽  
Shao-Win Wang

ABSTRACT Aminoacyl-tRNA synthetase cofactors play important roles in coordinating aminoacylation and translation. In this study, we describe an additional function of the fission yeast aminoacyl-tRNA synthetase cofactor 1 (Asc1) in translation. We found that Asc1 directly binds and stabilizes the interaction between small ribosomal protein Rps0A/uS2 and eukaryotic initiation factor 3a (eIF3a). In the absence of Asc1, the interaction between eIF3a and Rps0A/uS2 was compromised. The interaction between Rps0A/uS2 and eIF3a mediated the 40S ribosomal subunit binding of eIF3 in 43S preinitiation complex formation to stimulate translation initiation. Keeping with this idea, in an asc1 mutant, the association of mRNA with the 40S ribosomal subunit was defective and protein synthesis was compromised. To show that Asc1 is directly involved in translation, we demonstrate that the addition of recombinant Asc1 is able to rescue the translation defect of the asc1 mutant in a cell-free system. Furthermore, this function of Asc1 is likely to be evolutionarily conserved, as a similar interaction with eIF3a and Rps0A/uS2 could be identified in the budding yeast Saccharomyces cerevisiae and human aminoacyl-tRNA synthetase cofactors. Together, these results identify a function of aminoacyl-tRNA synthetase cofactors in translation preinitiation complex formation, which adds significantly to the expanded functions associated with aminoacyl-tRNA synthetases and their cofactors.


Structure ◽  
2014 ◽  
Vol 22 (6) ◽  
pp. 923-930 ◽  
Author(s):  
Yi Liu ◽  
Piotr Neumann ◽  
Bernhard Kuhle ◽  
Thomas Monecke ◽  
Stephanie Schell ◽  
...  

1998 ◽  
Vol 334 (2) ◽  
pp. 463-467 ◽  
Author(s):  
Gert C. SCHEPER ◽  
Adri A. M. THOMAS ◽  
van Roel WIJK

Protein synthesis in rat H35 Reuber hepatoma cells is rapidly inhibited on heat shock. At mild heat-shock temperatures the main cause for inhibition is the inactivation of the guanine nucleotide exchange factor eukaryotic initiation factor 2B (eIF2B); under more severe heat-shock conditions the activity of several initiation factors is compromised. eIF2B is required for GDP/GTP exchange on eIF2, which delivers methionyl-tRNA to the 40 S ribosomal subunit. We have tried to elucidate the mechanism underlying the inactivation of eIF2B by assays in vitro. Incubation of cell extracts at 41 °C or higher led to the inactivation of eIF2B. In agreement with observations in cells exposed to mild heat shocks, the thermal inactivation of eIF2B could be ascribed to neither eIF2α phosphorylation nor the induction of another inhibitor. With the use of glycerol gradients we show that eIF2B forms aggregates in heat-treated extracts. Furthermore eIF2B activity is protected against heat shock in thermotolerant cells. Taken together, these results suggest a role for chaperones in the control of eIF2B activity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2369-2369
Author(s):  
Steven M. Kornblau ◽  
Chenyue W Hu ◽  
Yihua Qiu ◽  
Suk Young Yoo ◽  
Rebecca A Murray ◽  
...  

Abstract Background. Conceptually mRNA processing and ribosomal regulation should interact as both affect mRNA translation and protein production. We studied protein expression and functional relationships between proteins in AML using a custom made reverse phase protein array (RPPA), probed with 231 strictly validated antibodies. We found a relationship between expression of Ribosomal Protein S6 (HUGO name R6SP, a.k.a. S6RP) and Eukaryotic Translation Initiation Factor 4EBinding Protein 1, (HUGO name EIF4EBP1). R6SP, a 40S ribosomal subunit component, activated by phosphorylation, regulates cell growth via selective mRNA translation. EIF4EBP1 interacts with eIF4E to recruit the 40S ribosomal subunit, thereby affecting ribosomal assembly. When phosphorylated, in response to cellular signaling, it releases eIF4E allowing transcription. Methods. Our RPPA has protein from leukemia enriched cells from 511 newly diagnosed AML patients and was probed with 231 strictly validated antibodies, including antibodies against total RPS6 and forms phosphorylated on S235-236 and S240-244, and against total EIF4EBP1 and forms phosphorylated on T37 & 46, T70 and S65. Expression was compared to normal bone marrow derived CD34+ cells. Interaction networks with the other 224 proteins were generated from the RPPA data using glasso and supplemented by the literature of known interactions. Results. A heatmap of expression of the 3 R6SP and 4 PA2 forms was generated and hierarchical k-and means clustering performed (Fig A). Using the “Prototype Clustering ”method an optimal division into four clusters (Fig B) was determined. This includes an “All-Off” state (18%), a state characterized by weak activation of RPS6 alone (RP-Only, 36%) activation of only EIF4EBP1 (EIF4EBP1-Only, 26%) and a group where both were on simultaneously (Both-On). The RPS6 interactome (Fig B) showed the expected positive correlation with mTOR, and P70 (Hugo RPS6KB1) and a previously unknown, but very strong, negative correlation with transcription factor ZNF296. The EIF4EBP1 interactome showed the expected strong positive correlation with many signal transduction pathways (MAP2K1, MAPK14) and proliferation related proteins (pRB, EIF2AK, EIF2S1, FOXO3) and negative correlation with several transcription factors (GATA3, SPI1, CREB). Cluster membership was unassociated with most clinical features including cytogenetics, FLT3 , RAS and NPM1 mutation, excluding gender (more F in All-Off, more M in Both-On, p=0.01). EIF4EBP1 and Both-On had higher WBC (p=0.0001) and % marrow (p=0.0001) and blood blasts (0.0007) and lower platelet counts (p=0.025). Response rates did not differ, although fewer All-Off were primary refractory. Relapse was more common in EIF4EBP1-Only and Both-On clusters. Overall survival (OS) and remission duration (RemDur) (Fig C) of the EIF4EBP1-Only and Both-On clusters was inferior to that of the All-Off and RP-Only clusters (OS median 41 & 45 vs. 52 &63,p=0.06, RemDur 39 & 27 weeks vs. 63 & 53, p=0.008) but this was restricted to Intermediate cytogenetics cases (Fig C “IntCyto” OS 49 & 55 weeks vs. 107& 79 p=0.01, RemDur 37 & 35 weeks vs. 89 & 53 , p = 0.005) that were FLT3 mutation ((Fig C “FLT3-WT” OS p=0.006, RemDur p0.007) and NPM1 mutation negative (Fig C “NPM1-WT”, OS p=0.006, RemDur p=0.001). Conclusions. Activation of EIF4EBP1, with or without RPS6 activation is prognostically adverse in AML, particularly in intermediate cytogenetic cases with wildtype FLT3 and NPM1. This is associated with increased proliferation. Therapy directed against EIF4EBP1 activity, e.g. that block it's phosphorylation, may have utility in the ~46% of cases of AML that demonstrate high levels of EIF4EBP1 phosphorylation, especially in FLT3/NPM1 wildtype cases. Many agents that inhibit signal transduction pathways are in clinical development, analyzing them for the ability to inhibition the activation of EIF4EBP1 might identify clinically useful molecules. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document