thermal inactivation
Recently Published Documents


TOTAL DOCUMENTS

1337
(FIVE YEARS 186)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yandri Yandri ◽  
Ezra Rheinsky Tiarsa ◽  
Tati Suhartati ◽  
Heri Satria ◽  
Bambang Irawan ◽  
...  

The stability of the α-amylase enzyme has been improved from Aspergillus fumigatus using the immobilization method on a bentonite matrix. Therefore, this study aims to obtain the higher stability of α-amylase enzyme from A. fumigatus; hence, it is used repeatedly to reduce industrial costs. The procedures involved enzyme production, isolation, partial purification, immobilization, and characterization. Furthermore, the soluble enzyme was immobilized using 0.1 M phosphate buffer of pH 7.5 on a bentonite matrix, after which it was characterized with the following parameters such as optimum temperature, Michaelis constant (KM), maximum velocity V max , thermal inactivation rate constant (ki), half-life (t1/2), and the change of energy due to denaturation (ΔGi). The results showed that the soluble enzyme has an optimum temperature of 55°C, KM of 3.04 mg mL−1 substrate, V max of 10.90 μmole mL−1 min−1, ki of 0.0171 min−1, t1/2 of 40.53 min, and ΔGi of 104.47 kJ mole−1, while the immobilized enzyme has an optimum temperature of 70°C, KM of 8.31 mg mL−1 substrate, V max of 1.44 μmole mL−1 min−1, ki of 0.0060 min−1, t1/2 of 115.50 min, and ΔGi of 107.37 kJ mole−1. Considering the results, the immobilized enzyme retained 42% of its residual activity after six reuse cycles. Additionally, the stability improvement of the α-amylase enzyme by immobilization on a bentonite matrix, based on the increase in half-life, was three times greater than the soluble enzyme.


2022 ◽  
pp. 114465
Author(s):  
Murat Canpolat ◽  
Serhat Bozkurt ◽  
Çağrı Şakalar ◽  
Ahmet Yılmaz Çoban ◽  
Deniz Karaçaylı ◽  
...  
Keyword(s):  

2021 ◽  
Vol 46 (341) ◽  
pp. 97-104
Author(s):  
Evalds Raits ◽  
Svetlana Raita ◽  
Asnate Kirse-Ozolina ◽  
Sandra Muizniece-Brasava

Abstract In the canning industry, thermal preservation processes typically are designed based on Clostridium botulinum thermal destruction kinetics. However, some bacteria can still survive, necessitating implementation of stricter timetemperature regimen for sterilization process. The aim of this study was to compare processing effectiveness at F0 (sterilization value) 8 ±1 min from the perspective of the vegetable-based product canning facility, while analyzing the inactivation, viability, and recovery of thermophilic bacteria. Four commercial products [tomato soup and rassolnik soup - acidified food (AF), and mushroom soup and pea porridge - low-acid food (LACF)] with different heat transfer characteristics (convection and conduction) were inoculated with 6.6 log10 spores/ml Geobacillus stearothermophilus LMKK 244 (reported as DSM 6790 and ATCC 10149 in other collections) and 4.810 log spores/ml Thermoanaerobacterium thermosaccharolyticum DSM 571 spore suspensions. Food samples contaminated with bacterial spores were processed in a steam-air retort at 118 °C for 75 min. G. stearothermophilus and T. thermosaccharolyticum growth was not detected in AF samples (pH = 4.4 and 4.5), but was observed in LACF samples (pH = 5.1 and 5.8). Practical evaluation showed that T. thermosaccharolyticum did not survive thermal processing, which was verified using a presence/absence test after incubation at 55 °C. G. stearothermophilus did not survive thermal processing, but recovered in pea porridge (pH = 5.8) during incubation. Our observations showed that food pH is a crucial factor determining microorganism survival during heat treatment and may be used by the vegetable-based product canning facilities to improve the food sterilization conditions.


2021 ◽  
Vol 130 (18) ◽  
pp. 184701
Author(s):  
B. S. Tilley ◽  
B. W. Hoff ◽  
J. W. Luginsland ◽  
J. Parker ◽  
A. Wharmby ◽  
...  

2021 ◽  
Vol 924 (1) ◽  
pp. 012043
Author(s):  
B D Argo ◽  
F A Amaliyah

Abstract Interest in soursop and its derivatives has increased over time, with many scientific articles reporting its health benefits. Several recent studies reported the presence of bioactive compounds and phytochemicals from soursop juice. However, climatic fruit tends to have different post-harvest handling than others. A series of processes from harvesting to extraction played an important role in its final product. The thermal inactivation of the PPO enzyme, which causes brownish color, can be used to improve the quality of soursop juice. This process can be carried out using the MTLT (Mild Temperature Long Time) pasteurization process using a customized double jacket heater by considering the thermoresistence properties of bioactive compounds in soursop juice. This study aims to determine the optimal formulation for process parameters also provide the optimal choice for the pasteurization process in pilot scale and database for the transition to industrial production. Response Surface Methodology (RSM) was a method used to optimize the process and formulation of soursop fruit juice. In this study, two factors were used, namely pasteurization temperature (56-80 °C) and heating time (5-15 min) obtained by previous research to determine the most optimal total Total Phenolic Content (TPC), Total Flavonoid Content (TFC), Color measurement, Total Dissolve Solid and Viscosity.


2021 ◽  
Author(s):  
Tobechukwu Christian Ezike ◽  
Arinze Linus Ezugwu ◽  
Jerry Okwudili Udeh ◽  
Kenneth Chinekwu Ugwuoke ◽  
Sabinus Oscar Onyebuchi Eze ◽  
...  

Abstract The effect of thermal treatment on the activity of laccase from Trametes polyzona WRF03 was studied at pH and temperature ranges of 3.0 to 6.5 and of 40 to 70 oC respectively. Kinetic data revealed that the heat inactivation of Trametes polyzona WRF03 laccase (TpL) was pH dependent and followed first-order kinetics. There was a positive correlation between activation energy (Ea) for thermal inactivation of TpL and the reaction pH. Highest activation energy, Ea, value of 175.49 kJ/mol was obtained at pH 6.0. On the contrary, the z-value decreased with a lowest value of 12.37 oC at pH 6.0. The high Ea value and low z-value were indicative of the thermo-stable nature of TpL which suggests that pH 6.0 had a compensatory stabilizing effect on TpL against its thermal denaturation. There was a gradual decrease in the enthalpy of denaturation (∆Ho) and Gibb’s free-energy with every 10 % rise in temperature within the investigated pH range, suggesting that TpL was more stable at 40 oC. Positive values of entropy of inactivation (ΔSº) at each temperature indicated that there was no aggregation during the inactivation processes. Thus, these results provided useful information about the behaviour of TpL under certain pH and temperature combination with respect to biotechnological application. Thus, the kinetic and thermodynamic data could be used to design a model to predict the thermal inactivation of TpL during industrial application.


Author(s):  
Bernard Téhi Sea ◽  
Armand Kouassi Kanga ◽  
Djary Michel Koffi ◽  
Lucien Patrice Kouamé

Polygalacturonases are extensively used in food industries for pectic substances degradation. In this paper, we investigate on thermal stability parameters of two Polygalacturonases previously isolated from digestive juice of the snail Limicolaria flammea for several industrial applications such as fruit juice clarification. Thermal inactivation was carried out in the temperature range of 55°C to 80°C from 15 to 120 min. All results were statistically analysed. The results shown that thermal inactivation of studied acid phosphatases follows first order kinetics. At their optimum temperatures, these enzymes showed high half-lives ranging from 462.06 to 630.10 min and D values from 1535.00 to 2093.64 min suggesting that these two enzymes had a large thermal stability. The high values of ΔG# (93.96 to 94.97 kJ/mol) reveal a better resistance to denaturation. The relatively high activation energies (from 120.35 to 129.13 kJ/mol) and average enthalpy values (from 117.67 to 126.44 kJ.mol−1) could corroborate the good stability of these biocatalyst. All these results suggest that Polygalacturonases from digestive juice of the snail Limicolaria flammea may be profitably exploited in future food industrial applications.


Sign in / Sign up

Export Citation Format

Share Document