scholarly journals Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits

2002 ◽  
Vol 367 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Nilce N. HASHIMOTO ◽  
Larissa S. CARNEVALLI ◽  
Beatriz A. CASTILHO

The heterotrimeric eukaryotic initiation factor (eIF) 2 binds the initiator methionyl-tRNA in a GTP-dependent mode and delivers it to the 40S ribosomal subunit. In the present study, we have identified amino acid residues in eIF2β required for binding to eIF2γ in yeast. Alteration of six residues in the central region of eIF2β abolished this interaction, as determined by GST-pull down and two-hybrid assays, and leads to cell lethality. Substitution of 131Tyr and 132Ser by alanine residues (131YS), although abolishing the binding to eIF2γ in these assays, resulted in a functional but defective protein in vivo, imparting a temperature-sensitive growth phenotype to cells. A dramatically weakened association of this mutant protein with eIF2γ in vivo was shown by co-immunoprecipitation. The 131YS mutation in eIF2β allows translation to initiate at non-AUG codons, as defined by the ability of cells carrying an initiator codon mutation in the HIS4 mRNA to grow in the absence of histidine. The combination of this mutation with the 264Ser→Tyr alteration, a previously isolated suppressor of initiator codon mutations which has been shown to increase the spontaneous GTP hydrolysis in the ternary complex, caused a recessive lethality, suggesting additive defects. Thus the impaired interaction of these two subunits represents a novel type of defect in eIF2 function, providing in vivo evidence that the strength of interaction between eIF2β and eIF2γ defines the correct usage of the AUG codon for translation initiation.

2006 ◽  
Vol 26 (8) ◽  
pp. 2984-2998 ◽  
Author(s):  
Klaus H. Nielsen ◽  
Leos Valášek ◽  
Caroah Sykes ◽  
Antonina Jivotovskaya ◽  
Alan G. Hinnebusch

ABSTRACT We found that mutating the RNP1 motif in the predicted RRM domain in yeast eukaryotic initiation factor 3 (eIF3) subunit b/PRT1 (prt1-rnp1) impairs its direct interactions in vitro with both eIF3a/TIF32 and eIF3j/HCR1. The rnp1 mutation in PRT1 confers temperature-sensitive translation initiation in vivo and reduces 40S-binding of eIF3 to native preinitiation complexes. Several findings indicate that the rnp1 lesion decreases recruitment of eIF3 to the 40S subunit by HCR1: (i) rnp1 strongly impairs the association of HCR1 with PRT1 without substantially disrupting the eIF3 complex; (ii) rnp1 impairs the 40S binding of eIF3 more so than the 40S binding of HCR1; (iii) overexpressing HCR1-R215I decreases the Ts− phenotype and increases 40S-bound eIF3 in rnp1 cells; (iv) the rnp1 Ts− phenotype is exacerbated by tif32-Δ6, which eliminates a binding determinant for HCR1 in TIF32; and (v) hcr1Δ impairs 40S binding of eIF3 in otherwise wild-type cells. Interestingly, rnp1 also reduces the levels of 40S-bound eIF5 and eIF1 and increases leaky scanning at the GCN4 uORF1. Thus, the PRT1 RNP1 motif coordinates the functions of HCR1 and TIF32 in 40S binding of eIF3 and is needed for optimal preinitiation complex assembly and AUG recognition in vivo.


Structure ◽  
2014 ◽  
Vol 22 (6) ◽  
pp. 923-930 ◽  
Author(s):  
Yi Liu ◽  
Piotr Neumann ◽  
Bernhard Kuhle ◽  
Thomas Monecke ◽  
Stephanie Schell ◽  
...  

1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


1996 ◽  
Vol 16 (10) ◽  
pp. 5450-5457 ◽  
Author(s):  
D Feigenblum ◽  
R J Schneider

Cap-dependent protein synthesis in animal cells is inhibited by heat shock, serum deprivation, metaphase arrest, and infection with certain viruses such as adenovirus (Ad). At a mechanistic level, translation of capped mRNAs is inhibited by dephosphorylation of eukaryotic initiation factor 4E (eIF-4E) (cap-binding protein) and its physical sequestration with the translation repressor protein BP-1 (PHAS-I). Dephosphorylation of BP-I blocks cap-dependent translation by promoting sequestration of eIF-4E. Here we show that heat shock inhibits translation of capped mRNAs by simultaneously inducing dephosphorylation of eIF-4E and BP-1, suggesting that cells might coordinately regulate translation of capped mRNAs by impairing both the activity and the availability of eIF-4E. Like heat shock, late Ad infection is shown to induce dephosphorylation of eIF-4E. However, in contrast to heat shock, Ad also induces phosphorylation of BP-1 and release of eIF-4E. BP-1 and eIF-4E can therefore act on cap-dependent translation in either a mutually antagonistic or cooperative manner. Three sets of experiments further underscore this point: (i) rapamycin is shown to block phosphorylation of BP-1 without inhibiting dephosphorylation of eIF-4E induced by heat shock or Ad infection, (ii) eIF-4E is efficiently dephosphorylated during heat shock or Ad infection regardless of whether it is in a complex with BP-1, and (iii) BP-1 is associated with eIF-4E in vivo regardless of the state of eIF-4E phosphorylation. These and other studies establish that inhibition of cap-dependent translation does not obligatorily involve sequestration of eIF-4E by BP-1. Rather, translation is independently regulated by the phosphorylation states of eIF-4E and the 4E-binding protein, BP-1. In addition, these results demonstrate that BP-1 and eIF-4E can act either in concert or in opposition to independently regulate cap-dependent translation. We suggest that independent regulation of eIF-4E and BP-1 might finely regulate the efficiency of translation initiation or possibly control cap-dependent translation for fundamentally different purposes.


2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2369-2369
Author(s):  
Steven M. Kornblau ◽  
Chenyue W Hu ◽  
Yihua Qiu ◽  
Suk Young Yoo ◽  
Rebecca A Murray ◽  
...  

Abstract Background. Conceptually mRNA processing and ribosomal regulation should interact as both affect mRNA translation and protein production. We studied protein expression and functional relationships between proteins in AML using a custom made reverse phase protein array (RPPA), probed with 231 strictly validated antibodies. We found a relationship between expression of Ribosomal Protein S6 (HUGO name R6SP, a.k.a. S6RP) and Eukaryotic Translation Initiation Factor 4EBinding Protein 1, (HUGO name EIF4EBP1). R6SP, a 40S ribosomal subunit component, activated by phosphorylation, regulates cell growth via selective mRNA translation. EIF4EBP1 interacts with eIF4E to recruit the 40S ribosomal subunit, thereby affecting ribosomal assembly. When phosphorylated, in response to cellular signaling, it releases eIF4E allowing transcription. Methods. Our RPPA has protein from leukemia enriched cells from 511 newly diagnosed AML patients and was probed with 231 strictly validated antibodies, including antibodies against total RPS6 and forms phosphorylated on S235-236 and S240-244, and against total EIF4EBP1 and forms phosphorylated on T37 & 46, T70 and S65. Expression was compared to normal bone marrow derived CD34+ cells. Interaction networks with the other 224 proteins were generated from the RPPA data using glasso and supplemented by the literature of known interactions. Results. A heatmap of expression of the 3 R6SP and 4 PA2 forms was generated and hierarchical k-and means clustering performed (Fig A). Using the “Prototype Clustering ”method an optimal division into four clusters (Fig B) was determined. This includes an “All-Off” state (18%), a state characterized by weak activation of RPS6 alone (RP-Only, 36%) activation of only EIF4EBP1 (EIF4EBP1-Only, 26%) and a group where both were on simultaneously (Both-On). The RPS6 interactome (Fig B) showed the expected positive correlation with mTOR, and P70 (Hugo RPS6KB1) and a previously unknown, but very strong, negative correlation with transcription factor ZNF296. The EIF4EBP1 interactome showed the expected strong positive correlation with many signal transduction pathways (MAP2K1, MAPK14) and proliferation related proteins (pRB, EIF2AK, EIF2S1, FOXO3) and negative correlation with several transcription factors (GATA3, SPI1, CREB). Cluster membership was unassociated with most clinical features including cytogenetics, FLT3 , RAS and NPM1 mutation, excluding gender (more F in All-Off, more M in Both-On, p=0.01). EIF4EBP1 and Both-On had higher WBC (p=0.0001) and % marrow (p=0.0001) and blood blasts (0.0007) and lower platelet counts (p=0.025). Response rates did not differ, although fewer All-Off were primary refractory. Relapse was more common in EIF4EBP1-Only and Both-On clusters. Overall survival (OS) and remission duration (RemDur) (Fig C) of the EIF4EBP1-Only and Both-On clusters was inferior to that of the All-Off and RP-Only clusters (OS median 41 & 45 vs. 52 &63,p=0.06, RemDur 39 & 27 weeks vs. 63 & 53, p=0.008) but this was restricted to Intermediate cytogenetics cases (Fig C “IntCyto” OS 49 & 55 weeks vs. 107& 79 p=0.01, RemDur 37 & 35 weeks vs. 89 & 53 , p = 0.005) that were FLT3 mutation ((Fig C “FLT3-WT” OS p=0.006, RemDur p0.007) and NPM1 mutation negative (Fig C “NPM1-WT”, OS p=0.006, RemDur p=0.001). Conclusions. Activation of EIF4EBP1, with or without RPS6 activation is prognostically adverse in AML, particularly in intermediate cytogenetic cases with wildtype FLT3 and NPM1. This is associated with increased proliferation. Therapy directed against EIF4EBP1 activity, e.g. that block it's phosphorylation, may have utility in the ~46% of cases of AML that demonstrate high levels of EIF4EBP1 phosphorylation, especially in FLT3/NPM1 wildtype cases. Many agents that inhibit signal transduction pathways are in clinical development, analyzing them for the ability to inhibition the activation of EIF4EBP1 might identify clinically useful molecules. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (10) ◽  
pp. 5328-5334 ◽  
Author(s):  
N Méthot ◽  
M S Song ◽  
N Sonenberg

The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3.


2003 ◽  
Vol 23 (24) ◽  
pp. 8925-8933 ◽  
Author(s):  
Sergei E. Dmitriev ◽  
Ilya M. Terenin ◽  
Yan E. Dunaevsky ◽  
William C. Merrick ◽  
Ivan N. Shatsky

ABSTRACT The reconstitution of translation initiation complexes from purified components is a reliable approach to determine the complete set of essential canonical initiation factors and auxiliary proteins required for the 40S ribosomal subunit to locate the initiation codon on individual mRNAs. Until now, it has been successful mostly for formation of 48S translation initiation complexes with viral IRES elements. Among cap-dependent mRNAs, only globin mRNAs and transcripts with artificial 5′ leaders were amenable to this assembly. Here, with modified conditions for the reconstitution, 48S complexes have been successfully assembled with the 5′ UTR of beta-actin mRNA (84 nucleotides) and the tripartite leader of adenovirus RNAs (232 nucleotides), though the latter has been able to use only the scanning rather then the shunting model of translation initiation with canonical initiation factors. We show that initiation factor 4B is essential for mRNAs that have even a rather moderate base pairing within their 5′ UTRs (with the cumulative stability of the secondary structure within the entire 5′ UTR < −13 kcal/mol) and not essential for beta-globin mRNA. A recombinant eIF4B poorly substitutes for the native factor. The 5′ UTRs with base-paired G residues reveal a very sharp dependence on the eIF4B concentration to form the 48S complex. The data suggest that even small variations in concentration or activity of eIF4B in mammalian cells may differentially affect the translation of different classes of cap-dependent cellular mRNAs.


2019 ◽  
Author(s):  
Francisco García-de-Gracia ◽  
Daniela Toro-Ascuy ◽  
Sebastián Riquelme-Barrios ◽  
Camila Pereira-Montecinos ◽  
Bárbara Rojas-Araya ◽  
...  

ABSTRACTTranslation initiation of the human immunodeficiency virus type-1 (HIV-1) unspliced mRNA has been shown to occur through cap-dependent and IRES-driven mechanisms. Previous studies suggested that the nuclear cap-binding complex (CBC) rather than eIF4E drives cap-dependent translation of the unspliced mRNA and we have recently reported that the CBC subunit CBP80 supports the function of the viral protein Rev during nuclear export and translation of this viral transcript. Ribosome recruitment during CBC-dependent translation of cellular mRNAs relies on the activity CBP80/20 translation initiation factor (CTIF), which bridges CBP80 and the 40S ribosomal subunit through interactions with eIF3g. Here, we report that CTIF restricts HIV-1 replication by interfering with Gag synthesis from the unspliced mRNA. Our results indicate that CTIF associates with Rev through its N-terminal domain and is recruited onto the unspliced mRNA ribonucleoprotein complex in order to block translation. We also demonstrate that CTIF induces the cytoplasmic accumulation of Rev impeding the association of the viral protein with CBP80. We finally show that CTIF restricts HIV-2 but not MLV Gag synthesis indicating an inhibitory mechanism conserved in Rev-expressing human lentiviruses.


Sign in / Sign up

Export Citation Format

Share Document