scholarly journals Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

2012 ◽  
Vol 26 (18) ◽  
pp. 2103-2117 ◽  
Author(s):  
C. Anderson ◽  
V. C. Williams ◽  
B. Moyon ◽  
P. Daubas ◽  
S. Tajbakhsh ◽  
...  
1996 ◽  
Vol 180 (2) ◽  
pp. 566-578 ◽  
Author(s):  
Silke Heymann ◽  
Maria Koudrova ◽  
H.-H. Arnold ◽  
Markus Köster ◽  
Thomas Braun

2004 ◽  
Vol 229 (3) ◽  
pp. 591-599 ◽  
Author(s):  
Sara J. Venters ◽  
Rebecca E. Argent ◽  
Fiona M. Deegan ◽  
Gina Perez-Baron ◽  
Ted S. Wong ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 495-505 ◽  
Author(s):  
D. Duprez ◽  
C. Fournier-Thibault ◽  
N. Le Douarin

Myogenic Regulatory Factors (MRFs) are a family of transcription factors whose expression in a cell reflects the commitment of this cell to a myogenic fate before any cytological sign of muscle differentiation is detectable. Myogenic cells in limb skeletal muscles originate from the lateral half of the somites. Cells that migrate away from the lateral part of the somites to the limb bud do not initially express any member of the MRF family. Expression of MRFs in the muscle precursor cells starts after the migration process is completed. The extracellular signals involved in activating the myogenic programme in muscle precursor cells in the limb in vivo are not known. We wished to investigate whether Sonic Hedgehog (SHH) expressed in the posterior part of the limb bud could be involved in differentiation of the muscle precursor cells in the limb. We found that retrovirally overexpressed SHH in the limb bud induced the extension of the expression domain of the Pax-3 gene, then that of the MyoD gene and finally that of the myosin protein. This led to an hypertrophy of the muscles in vivo. Addition of SHH to primary cultures of myoblasts resulted in an increase in the proportion of myoblasts that incorporate bromodeoxyuridine, resulting in an increase of myotube number. These data show that SHH is able to activate myogenesis in vivo and in vitro in already committed myoblasts and suggest that the stimulation of the myogenic programme by SHH involves activation of cell proliferation.


10.1038/13843 ◽  
1999 ◽  
Vol 23 (2) ◽  
pp. 213-216 ◽  
Author(s):  
Konstanze Schäfer ◽  
Thomas Braun

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1325-1335 ◽  
Author(s):  
M. Yamamoto ◽  
Y. Gotoh ◽  
K. Tamura ◽  
M. Tanaka ◽  
A. Kawakami ◽  
...  

The limb muscle precursor cells migrate from the somites and congregate into the dorsal and ventral muscle masses in the limb bud. Complex muscle patterns are formed by successive splitting of the muscle masses and subsequent growth and differentiation in a region-specific manner. Hox genes, known as key regulator genes of cartilage pattern formation in the limb bud, were found to be expressed in the limb muscle precursor cells. We found that HOXA-11 protein was expressed in the premyoblasts in the limb bud, but not in the somitic cells or migrating premyogenic cells in the trunk at stage 18. By stage 24, HOXA-11 expression began to decrease from the posterior halves of the muscle masses. HOXA-13 was expressed strongly in the myoblasts of the posterior part in the dorsal/ventral muscle masses and weakly in a few myoblasts of the anterior part of the dorsal muscle mass. Transplantation of the lateral plate of the presumptive wing bud to the flank induced migration of premyoblasts from somites to the graft. Under these conditions, HOXA-11 expression was induced in the migrating premyoblasts in the ectopic limb buds. Application of retinoic acid at the anterior margin of the limb bud causes duplication of the autopodal cartilage and transformation of the radius to the ulna, and at the same time induces duplication of the muscle pattern along the anteroposterior axis. Under these conditions, HOXA-13 was also induced in the anterior region of the ventral muscles in the zeugopod. These results suggest that Hoxa-11 and Hoxa-13 expression in the migrating premyoblasts is under the control of the limb mesenchyme and the polarizing signal(s). In addition, these results indicate that these Hox genes are involved in muscle patterning in the limb buds.


2009 ◽  
Vol 94 (6) ◽  
pp. 739-748 ◽  
Author(s):  
Seth S. Jump ◽  
Tom E. Childs ◽  
Kevin A. Zwetsloot ◽  
Frank W. Booth ◽  
Simon J. Lees

2012 ◽  
Vol 243 (1-2) ◽  
pp. 100-102 ◽  
Author(s):  
Emanuela Colombo ◽  
Stefania Romaggi ◽  
Marina Mora ◽  
Lucia Morandi ◽  
Cinthia Farina

1992 ◽  
Vol 102 (4) ◽  
pp. 789-798
Author(s):  
S.J. Murphy ◽  
D.J. Watt ◽  
G.E. Jones

Muscle precursor cells may act not only as a means of inserting normal genes into diseased muscle fibres, in order to correct or alleviate a genetically inherited myopathy, but recent demonstrations have shown they may prove an invaluable tool for the expression of, and systemic dissemination of, non-muscle gene products. If muscle precursor cells are proved to act as such widespread vectors in terms of gene therapy, then it is imperative that methods are properly elucidated to produce large populations of pure viable myogenic cells for such purposes. In the past, many methods of cell separation have been investigated but carry with them the problems of either a lack of myogenic purity of the population or poor percentage recovery of the original cell population. In the present work we have investigated two methods for segregating myogenic from non-myogenic cells and have critically reviewed the efficiency of separation of the two techniques used. To obtain a quantitative measure of separation efficiency, segregation was carried out on a 1:1 mixture of murine C2 myogenic and murine 3T3 fibroblastic cells. To distinguish between C2 and 3T3 cells, the latter were prelabelled with the fluorescent strain carboxyfluorescein diacetate succinimyl ester (CFSE). Once incorporated into the cell, CFSE remains there, thus preventing transfer of the label to C2 cells. Both methods of separation used depend on the affinity of myogenic cells for the monoclonal antibody Mab H28, which specifically binds to the mouse neuronal cell adhesion molecule N-CAM, but differ in that one method, “panning”, completes segregation by adherence of N-CAM positive cells to a dish precoated with secondary IgG antibody whereas in the other separation proceeds by the use of commercially available IgG-coated magnetic beads. Results indicate magnetic bead separation to be more efficient than panning if the beads are precoated with 0.1% gelatin.


Sign in / Sign up

Export Citation Format

Share Document