expression domain
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Xigang Liu ◽  
Ke Zhang ◽  
Hao Zhang ◽  
Yanyun Pan ◽  
Lin Guo ◽  
...  

In cell-cell communication, non-cell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR 3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression is mainly activated at the periphery of the SAM by auxin, where ARF3 cell-autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2) and TARGETS UNDER ETTIN CONTROL3 (TEC3) to determine organ patterning. We also show that ARF3 is translocated into the organizing center, where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity non-cell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.


2022 ◽  
Author(s):  
saya furukawa ◽  
sakiya yamamoto ◽  
rena kashimoto ◽  
yoshihiro morishita ◽  
Akira Satoh

Limb regeneration in Ambystoma mexicanum occurs in various sizes of fields and can recreate consistent limb morphology. It was not known what mechanism supports such stable limb morphogenesis regardless of size. Limb regeneration in urodele amphibians has been basically considered to recapitulate the limb developmental processes. Many molecules in the limb developmental processes are conserved with other tetrapods. SHH and FGF8 play important roles in the morphogenesis of limbs among them. Focusing on these two factors, we investigated the detailed expression pattern of Shh and Fgf8 in the various sizes of blastema in axolotl limb regeneration. Fgf8 is expressed in the anterior side of a blastema and Shh is expressed in the posterior side. These are maintained in a mutually dependent manner. We also clarified that the size of Shh and Fgf8 expression domains were scaled as the size of the blastemas increased. However, it was found that the secretion and working range of SHH were kept constant. We also found that the consistent SHH secretion range contributed to promoting cell proliferation and the first digital cartilage differentiation near the Shh expression domain. This would be a reasonable system to guarantees constant limb morphogenesis regardless of the blastema size. We also showed that the Shh-Fgf8 expression domain was shifted posteriorly as the digital differentiation progressed. Consistently, slowing the timing of blocking Shh signaling resulted in morphological defects that could be observed in only posterior digits. The revealed posteriorly shifting Shh-Fgf8 domain might explain urodele specific digit formation, in which digits are added posteriorly.


2021 ◽  
Author(s):  
Josep Mercadal ◽  
Isabel Betegón-Putze ◽  
Nadja Bosch ◽  
Ana I. Caño-Delgado ◽  
Marta Ibañes

AbstractStem cell niches are local microenvironments that preserve their unique identity while communicating with adjacent tissues. In the primary root of Arabidopsis thaliana, the stem cell niche comprises the expression of two transcription factors, BRAVO and WOX5, among others. Intriguingly, these proteins confine their own gene expression to the niche, as evidenced in each mutant background. Here we propose through mathematical modeling that BRAVO confines its own expression domain to the stem cell niche by attenuating its WOX5-dependent diffusible activator. This negative feedback drives WOX5 action to be spatially restricted as well. The results show that WOX5 diffusion and sequestration by binding to BRAVO is sufficient to drive realistic confined BRAVO expression at the stem cell niche. We propose that attenuation of a diffusible activator can be a general mechanism to confine genetic activity to a small region while at the same time maintain signaling within it and with the surrounding cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan J. Geusz ◽  
Allen Wang ◽  
Dieter K. Lam ◽  
Nicholas K. Vinckier ◽  
Konstantinos-Dionysios Alysandratos ◽  
...  

AbstractFOXA pioneer transcription factors (TFs) associate with primed enhancers in endodermal organ precursors. Using a human stem cell model of pancreas differentiation, we here discover that only a subset of pancreatic enhancers is FOXA-primed, whereas the majority is unprimed and engages FOXA upon lineage induction. Primed enhancers are enriched for signal-dependent TF motifs and harbor abundant and strong FOXA motifs. Unprimed enhancers harbor fewer, more degenerate FOXA motifs, and FOXA recruitment to unprimed but not primed enhancers requires pancreatic TFs. Strengthening FOXA motifs at an unprimed enhancer near NKX6.1 renders FOXA recruitment pancreatic TF-independent, induces priming, and broadens the NKX6.1 expression domain. We make analogous observations about FOXA binding during hepatic and lung development. Our findings suggest a dual role for FOXA in endodermal organ development: first, FOXA facilitates signal-dependent lineage initiation via enhancer priming, and second, FOXA enforces organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kamila Kwaśniewska ◽  
Caoilfhionn Breathnach ◽  
Christina Fitzsimons ◽  
Kevin Goslin ◽  
Bennett Thomson ◽  
...  

In the model plant Arabidopsis thaliana, the zinc-finger transcription factor KNUCKLES (KNU) plays an important role in the termination of floral meristem activity, a process that is crucial for preventing the overgrowth of flowers. The KNU gene is activated in floral meristems by the floral organ identity factor AGAMOUS (AG), and it has been shown that both AG and KNU act in floral meristem control by directly repressing the stem cell regulator WUSCHEL (WUS), which leads to a loss of stem cell activity. When we re-examined the expression pattern of KNU in floral meristems, we found that KNU is expressed throughout the center of floral meristems, which includes, but is considerably broader than the WUS expression domain. We therefore hypothesized that KNU may have additional functions in the control of floral meristem activity. To test this, we employed a gene perturbation approach and knocked down KNU activity at different times and in different domains of the floral meristem. In these experiments we found that early expression in the stem cell domain, which is characterized by the expression of the key meristem regulatory gene CLAVATA3 (CLV3), is crucial for the establishment of KNU expression. The results of additional genetic and molecular analyses suggest that KNU represses floral meristem activity to a large extent by acting on CLV3. Thus, KNU might need to suppress the expression of several meristem regulators to terminate floral meristem activity efficiently.


2021 ◽  
Author(s):  
Rong-Chien Lin ◽  
Mark D. Rausher

AbstractIt has been suggested that gene duplication and polyploidization create opportunities for the evolution of novel characters. However, the connections between the effects of polyploidization and morphological novelties have rarely been examined. In this study, we investigated whether petal pigmentation patterning in an allotetraploid Clarkia gracilis has evolved as a result of polyploidization. C. gracilis is thought to be derived through a recent polyploidization event with two diploid species, C. amoena huntiana and an extinct species that is closely related to C. lassenensis. We reconstructed phylogenetic relationships of the R2R3-MYBs (the regulators of petal pigmentation) from two subspecies of C. gracilis and the two purported progenitors, C. a. huntiana and C. lassenensis. The gene tree reveals that these R2R3-MYB genes have arisen through duplications that occurred before the divergence of the two progenitor species, i.e., before polyploidization. After polyploidization and subsequent gene loss, only one of the two orthologous copies inherited from the progenitors was retained in the polyploid, turning it to diploid inheritance. We examined evolutionary changes in these R2R3-MYBs and in their expression, which reveals that the changes affecting patterning (including expression domain contraction, loss-of-function mutation, cis-regulatory mutation) occurred after polyploidization within the C. gracilis lineages. Our results thus suggest that polyploidization itself is not necessary in producing novel petal color patterns. By contrast, duplications of R2R3-MYB genes in the common ancestor of the two progenitors have apparently facilitated diversification of petal pigmentation patterns.


Author(s):  
Giulia Ascari ◽  
Nanna D. Rendtorff ◽  
Marieke De Bruyne ◽  
Julie De Zaeytijd ◽  
Michel Van Lint ◽  
...  

Inactivating variants as well as a missense variant in the centrosomal CEP78 gene have been identified in autosomal recessive cone-rod dystrophy with hearing loss (CRDHL), a rare syndromic inherited retinal disease distinct from Usher syndrome. Apart from this, a complex structural variant (SV) implicating CEP78 has been reported in CRDHL. Here we aimed to expand the genetic architecture of typical CRDHL by the identification of complex SVs of the CEP78 region and characterization of their underlying mechanisms. Approaches used for the identification of the SVs are shallow whole-genome sequencing (sWGS) combined with quantitative polymerase chain reaction (PCR) and long-range PCR, or ExomeDepth analysis on whole-exome sequencing (WES) data. Targeted or whole-genome nanopore long-read sequencing (LRS) was used to delineate breakpoint junctions at the nucleotide level. For all SVs cases, the effect of the SVs on CEP78 expression was assessed using quantitative PCR on patient-derived RNA. Apart from two novel canonical CEP78 splice variants and a frameshifting single-nucleotide variant (SNV), two SVs affecting CEP78 were identified in three unrelated individuals with CRDHL: a heterozygous total gene deletion of 235 kb and a partial gene deletion of 15 kb in a heterozygous and homozygous state, respectively. Assessment of the molecular consequences of the SVs on patient’s materials displayed a loss-of-function effect. Delineation and characterization of the 15-kb deletion using targeted LRS revealed the previously described complex CEP78 SV, suggestive of a recurrent genomic rearrangement. A founder haplotype was demonstrated for the latter SV in cases of Belgian and British origin, respectively. The novel 235-kb deletion was delineated using whole-genome LRS. Breakpoint analysis showed microhomology and pointed to a replication-based underlying mechanism. Moreover, data mining of bulk and single-cell human and mouse transcriptional datasets, together with CEP78 immunostaining on human retina, linked the CEP78 expression domain with its phenotypic manifestations. Overall, this study supports that the CEP78 locus is prone to distinct SVs and that SV analysis should be considered in a genetic workup of CRDHL. Finally, it demonstrated the power of sWGS and both targeted and whole-genome LRS in identifying and characterizing complex SVs in patients with ocular diseases.


Author(s):  
Marta Marchini ◽  
Diane Hu ◽  
Lucas Lo Vercio ◽  
Nathan M. Young ◽  
Nils D. Forkert ◽  
...  

Canonical Wnt signaling plays multiple roles critical to normal craniofacial development while its dysregulation is known to be involved in structural birth defects of the face. However, when and how Wnt signaling influences phenotypic variation, including those associated with disease, remains unclear. One potential mechanism is via Wnt signaling’s role in the patterning of an early facial signaling center, the frontonasal ectodermal zone (FEZ), and its subsequent regulation of early facial morphogenesis. For example, Wnt signaling may directly alter the shape and/or magnitude of expression of the sonic hedgehog (SHH) domain in the FEZ. To test this idea, we used a replication-competent avian sarcoma retrovirus (RCAS) encoding Wnt3a to modulate its expression in the facial mesenchyme. We then quantified and compared ontogenetic changes in treated to untreated embryos in the three-dimensional (3D) shape of both the SHH expression domain of the FEZ, and the morphology of the facial primordia and brain using iodine-contrast microcomputed tomography imaging and 3D geometric morphometrics (3DGM). We found that increased Wnt3a expression in early stages of head development produces correlated variation in shape between both structural and signaling levels of analysis. In addition, altered Wnt3a activation disrupted the integration between the forebrain and other neural tube derivatives. These results show that activation of Wnt signaling influences facial shape through its impact on the forebrain and SHH expression in the FEZ, and highlights the close relationship between morphogenesis of the forebrain and midface.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joanna Winkler ◽  
Andreas De Meyer ◽  
Evelien Mylle ◽  
Veronique Storme ◽  
Peter Grones ◽  
...  

Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.


Development ◽  
2021 ◽  
pp. dev.196121
Author(s):  
Daisy J. Vinter ◽  
Caroline Hoppe ◽  
Thomas G. Minchington ◽  
Catherine Sutcliffe ◽  
Hilary L. Ashe

The Hunchback (Hb) transcription factor is critical for anterior-posterior patterning of the Drosophila embryo. Despite the maternal hb mRNA acting as a paradigm for translational regulation, due to its repression in the posterior of the embryo, little is known about the translatability of zygotically transcribed hb mRNAs. Here we adapt the SunTag system, developed for imaging translation at single mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. While the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.


Sign in / Sign up

Export Citation Format

Share Document