cell separation
Recently Published Documents





2022 ◽  
Vol 8 (1) ◽  
pp. 11
Marie Frenea-Robin ◽  
Julien Marchalot

Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.

2022 ◽  
Vol 8 (1) ◽  
pp. 10
Ozgun Civelekoglu ◽  
A. Bruno Frazier ◽  
A. Fatih Sarioglu

The magnetic separation of cells based on certain traits has a wide range of applications in microbiology, immunology, oncology, and hematology. Compared to bulk separation, performing magnetophoresis at micro scale presents advantages such as precise control of the environment, larger magnetic gradients in miniaturized dimensions, operational simplicity, system portability, high-throughput analysis, and lower costs. Since the first integration of magnetophoresis and microfluidics, many different approaches have been proposed to magnetically separate cells from suspensions at the micro scale. This review paper aims to provide an overview of the origins of microfluidic devices for magnetic cell separation and the recent technologies and applications grouped by the targeted cell types. For each application, exemplary experimental methods and results are discussed.

2022 ◽  
pp. 193-225
Jun Zhang ◽  
Nam-Trung Nguyen

iScience ◽  
2022 ◽  
pp. 103776
Kyoichi Oshiro ◽  
Yoshikazu Wakizaka ◽  
Masayo Takano ◽  
Takayuki Itoi ◽  
Hiroki Ohge ◽  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260593
Darwesh Mohideen Kaderbatcha Aladin ◽  
Yeh Shiu Chu ◽  
Shuo Shen ◽  
Robert Charles Robinson ◽  
Sylvie Dufour ◽  

Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension with the Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signaling.

2021 ◽  
Vol 3 (12) ◽  
Abhiram Maddi ◽  
Jaewon Kim ◽  
Harleen Sohi ◽  
Sujay Busarajan ◽  
Olga Glagovyak ◽  

In Candida albicans chitin synthesis is important for cell wall integrity and may also have a role in emergence of drug-resistance. Our past studies showed that cell wall mannosidases, Dfg5 and Dcw1, regulate HOG MAPK signaling. In this study, we investigated how Dfg5 and Dcw1 regulate chitin synthesis by affecting HOG, PKC and Calcium-Calcineurin signaling pathways. DFG5 and DCW1 heterologous mutants (ES1 & ES195) and a conditional mutant (ES195+methionine/cysteine) were utilized. WT SC5314 served as negative control and Hog1 knock-out mutant as positive control. Fluorescence microscopy of calcofluor white (CFW) stained mutant and control strains was performed to observe chitin accumulation. Quantitative PCR analysis was performed to measure the relative expression of chitin synthases CHS1, CHS2, CHS3 and CHS8. Incubation with chitinase was done to determine cell separation using light microscopy and scanning electron microscopy (SEM) analysis. Fluorescence microscopy showed significantly increased chitin accumulation in the mutants as compared to wild type. Chitin accumulation was observed mainly at the budding sites indicating a cause for defective cell separation phenotype. Incubation with chitinase led to cell separation in the mutants. CHS2, CHS3 and CHS8 expression was observed to be significantly upregulated in the conditional mutant and HOG1 mutant as compared to the wild type. This upregulation was also observed when the cell wall integrity PKC pathway was activated. However, activation of the Calcium-calcineurin pathway downregulated chitin synthase expression in the mutants. Our data indicates that Dfg5 and Dcw1 regulate expression of chitin synthases via HOG MAPK, PKC and Calcium-calcineurin signaling pathways.

Seyed Ali Tabatabaei ◽  
Mohammad Zabetian Targhi ◽  
Javane Javaherchian ◽  
Marzieh Yaghoubi

Abstract The microfluidics separation has absorbed wide-ranging attention in recent years due to its outstanding advantages in biological, medical, clinical, and diagnostical cell studies. While conventional separation methods failed to render the acceptable performance, microfluidics sorting methods offer many privileges such as high-throughput, user-friendliness, minimizing sample volumes, cost-efficiency, non-invasive procedures, high precision, improved portability, quick processing, etc. Among the inertial microfluidics approaches such as the straight and curved microchannels, although the spiral microchannels, which are the sorts of passive separations, are complicated in concepts and geometries, they have demonstrated auspicious benefits for this purpose. Thus, numerous studies have strived to explain the principle of particle migrating and forces in these complex microchannels. However, a comprehensive understanding is still necessary. On the other side, it is manifest that the diagnosis and separation of circulating tumor cells from the blood are significant for targeted treatments of this detrimental disease. Therefore, this study aims to review the previous investigations and developments for understanding the circulating tumor cell separation using the spiral microchannels straightforwardly and profoundly. After elucidating the inertial microfluidics and their governing physics in simple terms, we provide insights about spiral microchannels' mechanism and concepts, the secondary flow, the cross-section effects on the separation processes, and finally, the future applications and challenges of this kind of inertial microfluidics. The investigations reveal that new approaches should be conducted to use the spiral microchannels with combined cross-sections. These kinds of microchannels with optimum size and shape of cross-sections can improve the performance efficiently.

Sign in / Sign up

Export Citation Format

Share Document